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ABSTRACT 

 

APPLICATION OF A HYBRID MACHINE LEARNING MODEL ON SHORT 

TERM ELECTRICITY DEMAND PREDICTION   

 

 

Assar, Ahmed Khaled Ahmed Farouk 

Master of Science, Sustainable Environment and Energy Systems Program 

Supervisor: Assoc. Prof. Dr. Murat Fahrioğlu 

 

 

February 2022, 160 pages 

 

Electricity demand forecasting is an important procedure in the electricity market 

and plays a great role in assuring a sustainable and efficient operation chain. By ac-

curately forecasting the demand, one can see a considerable reduction in production 

costs as well as saving energy resources. Therefore, optimizing the demand forecast-

ing techniques became an inseparable goal of power economics, leading to the intro-

duction of machine learning to this sector that proved to be superior to other pre-

defined alternatives. This thesis proposes to apply a Hybrid model that combines two 

forecasting machine learning algorithms; namely Support Vector Regression (SVR) 

and Long Short-Term Memory (LSTM). The hourly data from the Spanish electricity 

market is used to forecast the day-ahead electricity consumption in the last quarter 

of the year 2018, with weather Variables being fed to the models as the inputs. The 

performance of the proposed model is compared with the Temperature regression 

and load projection model (the actual model used in Spain), Autoregressive Inte-

grated Moving Average (ARIMA), Artificial Neural Networks (ANNs), and SVR 

and LSTM separately. The combined method's forecasting results were shown to be 

superior to all four suggested independent approaches, and it was able to successfully 

minimize errors and enhance the accuracy between actual and forecasted values. 

However, the proposed Hybrid model didn’t outperform the already applied ap-

proach and achieved a Mean Absolute Percentage Error (MAPE) of 1.71557 and a 

Mean Absolute Error (MAE) of 488.269. 
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ÖZ 

 

HİBRİT MAKİNE ÖĞRENME MODELİNİN KISA DÖNEM ELEKTRİK 

TALEP TAHMİNİ ÜZERİNE UYGULAMASI 

 

 

Assar, Ahmed Khaled Ahmed Farouk 

Yüksek Lisans, Sürdürülebilir Çevre ve Enerji Sistemleri Programı  

Tez Yöneticisi: Doç. Dr. Murat Fahrioğlu 

 

 

Şubat 2022, 160 Sayfa 

Elektrik talep tahmini, elektrik piyasasında önemli bir işlem olmakla birlikte 

sürdürülebilir ve verimli bir operasyon zincirinin sağlanmasında büyük rol oynamak-

tadır. Elektrik talebi doğru bir şekilde tahmin edilerek, üretim maliyetlerini önemli 

ölçüde azaltmanın yanı sıra enerji kaynaklarından da tasarruf sağlanabilir. Bu 

nedenle, talep tahmin yöntemlerini optimize etmek, güç ekonomisinin vazgeçilmez 

bir hedefi haline gelmiş olup, sektörde önceden tanımlanmış diğer alternatif yöntem-

lerden daha üstün olduğu kanıtlanan makine öğrenimi sistemlerinin kullanılmasına 

yol açmıştır. Bu tez, makine öğrenim algoritmalarını birleştiren bir hibrit model 

önerir. Bu hibrit modeli oluştururken kullanılan algoritmalar, Destek Vektör Re-

gresyonu (Support Vector Regression - SVR) ve Uzun Kısa Dönemli Bellek (Long 

Short-Term Memory - LSTM) olup, İspanya elektrik piyasasının saatlik verilerini 

kullanarak 2018 yılının son çeyreğinde gün öncesi elektrik tüketimini tahmin etmek 

için kullanıldı. Önerilen modelin performansı, sıcaklık regresyonu ve yük pro-

jeksiyon modeli (İspanya'da kullanılan model), Otomatik Regresif Hareketli 

Ortalama (Autoregressive Integrated Moving Average - ARIMA), Yapay Sinir 

Ağları (Artificial Neural Networks - ANNs), SVR ve LSTM ile ayrı ayrı 

karşılaştırıldı. Yöntemin hataları başarılı bir şekilde en aza indirildi ve bu sayede 

gerçek ile tahmin edilen değerler arasındaki doğruluk arttırılmış oldu.  Ancak öner-

ilen Hibrit model, hali hazırda uygulanan yöntemden daha iyi performans 
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gösteremedi ve 1.71557'lik bir Ortalama Mutlak Yüzdelik Hata (MAPE) ve 

488.269'luk bir Ortalama Mutlak Hata (MAE) değerine ulaştı. 

 

Anahtar Kelimeler: Güç Ekonomisi, Elektrik Piyasaları, Makine Öğrenimi, Talep 

Tahmini, Tahmin Modelleri 
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CHAPTER 1  

1. INTRODUCTION  

Nowadays, with all the technological advancements that the globe is experiencing, 

everything is turning to be automated and the main source that this whole transition 

is depending on is electricity. Electricity, transforming into an essential commodity 

that has to be available instantaneously led to the development of electricity markets 

which can be considered as the most vital market in a country’s economy.  

 

Natural energy consumption continues to rise as people's living standards and soci-

oeconomic status have been rising dramatically in the past century. As the problem 

of energy scarcity becomes more serious, more and more governments are placing a 

premium on finding solutions to this topic. Electricity, one of the most essential en-

ergy resources, plays a critical function in the stability of any power system, which 

resulted in it being a primary incentive for improving societal development. 

 

Electricity is a difficult-to-store resource; also, electricity consumption is influenced 

by a variety of unpredictable variables such as weather, population, holidays, emer-

gencies, and so on. Having absolutely no control over these variables’ behavior, the 

electricity market finds it challenging to estimate the demand due to all of these mas-

sive challenges. As a result, in the power market, an exact and precise forecasting 

system is required since incorrect electricity demand projections, on the other hand, 

will be unproductive. A procedure that is overestimated will raise the workload of 

electricity production and waste energy resources whereas an underestimate will fail 

to meet the demand and may cause fatal systems’ breakdowns. As a result, whether 

for developed or developing countries, precise electrical demand forecasting is a re-

quirement to pre-meet the demand. Developing a creative approach that is not only 
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effective but also improves forecasting accuracy is necessary for any type of elec-

tricity demand projections, whether short-term, mid-term, or long-term. [1] 

 

Also, the electricity market is unique in a way that there is no direct communication 

between the customer and the supplier. Moreover, the demand in this market is not 

absolute, which means that the demand is always fluctuating, which is also one of 

the main incentives that led the market to adopt forecasting techniques to predict the 

demand and supply accordingly. All the previous points show the complete volatility 

of the market. Even though the electricity market can be arguably considered the 

most critical market in a country’s economy, it is prone to failure the most. That is 

why all the countries adopt strict regulations to ensure that the electricity market 

operates efficiently. Having these unique characteristics, the electricity market oper-

ates on the principles of forecasting. 

 

As the essence of finding reliable prediction models increases, many novelties are 

being presented by specialists in an attempt to narrow the gap between the forecasted 

data and actual reality. These prediction models work using different principles and 

utilize different techniques, however, they can fall under two main categories; para-

metric and nonparametric approaches.  

 

Parametric approaches usually use time-based and regression methods to deal with 

data. Goia et al. published their research which used specifically linear regression to 

forecast the peak electricity demand [2]. In the case of time-based methods, Auto-

regressive integrated moving average (ARIMA)  models are extensively used in the 

electricity load prediction, one of the multiple research that used such an approach 

was for the demand prediction in turkey by Erdogdu et al. [3]. 

 

On the other hand, nonparametric approaches employ artificial intelligence (AI) and 

machine learning algorithms to deal with the available data. Some of the mainstream 

blocks that have been used since the introduction of these methods to electricity load 
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forecast are Neural Networks (NN) [4], Artificial Neural Networks (ANN) [5], and 

Support Vector Machines (SVM) [6].  

 

Even though these approaches proved to be of great accuracy, the reliability of their 

results depends heavily on the nature of the data that is being fed to them. The vari-

ables that are being input into the system have different trends and behaviors, some 

data may vary linearly, others may vary nonlinearly whereas some other data can 

vary both linearly and nonlinearly but in a seasonal manner (variation repetition 

every specific time interval). The models that these approaches incorporate, may be 

reliable to one specific type of variation and faulty to others. That is why Hybrid 

models were introduced recently in the electricity markets. 

 

Coming from its name, Hybrid models are a combination of two or several models 

that can be both parametric and nonparametric based, which in return can deal with 

different variations within the same data set and has proved to be of higher superior-

ity to the conventional models already available in the market. [7] 

 

This thesis will combine parametric and nonparametric approaches to form a hybrid 

model that will be tested on a specific data set (to be justified in upcoming sections) 

obtained from the Spanish electricity market. The results of this model will be com-

pared with the already used technique in the literature and conclusions will be drawn.  

 

This thesis will be sectioned into 7 chapters, chapter 2 will be familiarizing the reader 

with what power economics is and how does electricity markets operate, chapter 3 

will be a literature review covering what are the different principles that forecasting 

models use. The case study and data justification will be presented in chapter 4, later 

on, chapter 5 will thoroughly explain the theory behind the models used and illustrate 

the methodology implemented on the datasets., and before concluding and stating 

final remarks in chapter 7, chapter 6 will represent the results. 
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CHAPTER 2  

2. POWER ECONOMICS 

Power economics is a term that engulfs the general electricity market including its 

policies, entities, and regulations. This type of economics emerged as a result of the 

availability of multiple energy scarcities which are used by numerous suppliers to 

produce electricity. As urbanization is continuously spreading through the human 

lands, the demand for electricity is exponentially increasing and becoming chaotic, 

therefore an organized system had to be established to efficiently connect the demand 

side and the suppliers [8]. The designed system is governed by general policies and 

regulations that are divided into two categories; one which is common to all places 

around the globe and this category aids in facilitating electricity trading and sharing 

between countries and the second category contains other “local” policies that are 

specifically tailored to suit the special cases in a country, the mentioned system is 

what is known as electricity market. [9] 

2.1 General Analogy 

To aid the reader in understanding the full concept of electricity transactions that 

occur in the market, some of the complicated terms will be simplified using the fol-

lowing figure. 
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Figure 2.1. Simple Electric Circuit 

 

Figure 2.1 above illustrates a simple electric circuit with basic components. The sim-

ple schematic shown above can be related to the real-time application in power eco-

nomics. The battery shown above resembles the “Suppliers” who are responsible 

for providing electricity, whereas the bulb represents the “Demand” that consumes 

electricity. The electric wire connecting them is known as “Transmission lines”. 

Finally, the whole circuit can be related to what is known as the “Grid”. The grid is 

a huge circuit in practice that connects all the demand (bulb) in a country to the total 

number of suppliers (battery). The grid is defined by its total capacity which depends 

on the number of suppliers with the amount of electricity that they can provide, as 

well as its reach, i.e. the connection of transmission lines between the number of 

consumers and the suppliers.  However, in actual operation, the circuit is meticulous 

as shown below in figure 2.2. [10] 
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Figure 2.2. Random Power Network  

 

2.2 The Main Entities in the market 

The electricity markets are composed of four main parties that are; Demand, Supply, 

transmission &distribution,  and Operator.  

2.2.1 Supply: 

The supply chain consists of either one or multiple electricity generation companies 

(GENCO) that utilize different types of energy sources to produce electricity which 

vary in magnitude and the availability time i.e. the time in which the GENCO can 

provide electricity. 
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2.2.2 Demand 

The demand side has mainly two types of customers which can be categorized as 

“small” customers and “large” customers. Small customers are defined according to 

their usage, if it falls under a predefined threshold then they are considered as small 

customers otherwise they are considered as large customers [11]. The difference be-

tween them can be explained clearly using the previously mentioned analogy, large 

costumers’ consumption is large enough to be a bulb, whereas a group of small cus-

tomers combined together can reach enough consumption to be considered as one. 

Small customers are like the normal conventional households and on the other hand, 

large customers are like large production factories.  A number of small customers 

are usually handled by agencies that represent them in the market and they are known 

to be called  “Retailers” or “Demand Forecasting Agencies” 

2.2.3 Distribution and Transmission 

These entities are either grouped together or operate separately depending on the 

conditions in a country. Coming from their names, these entities are responsible for 

the electricity transmission from one point to the other and also the distribution of 

electricity to the end customers. 

2.2.4 Independent System Operator (ISO) 

This entity exists to control the operating environment, it is usually a non-profit or-

ganization or a governmental institute that makes sure that no laws are being broken 

and the transactions are unbiased. [12] 
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2.3 Types of Market 

The following information presented in this section is obtained from [13] 

 

In general, two types of markets exist, the nature of the market depends mainly on a 

country’s condition. These conditions may vary from the availability of natural re-

sources, the advancement of technologies, and the laws and governing policies for 

the market. 

The two types of markets are known as “vertical company” market and “competi-

tion” market. A simplified diagram illustrating the differences between them is 

shown below. 

 

Figure 2.3. Vertical Market v.s Competition Market 

 

The vertical market is represented by the left diagram in figure 2.3, it is important to 

note that the blue shade in the background defines the entities that are under the 

government’s authority whereas the red shade resembles the private entities. As 

shown in the figure, vertical company markets usually let their governments operate 
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most of the entities mentioned in the previous section from generation to distribution 

and even sometimes the retailing stage as well. This type of market can be usually 

found in developing countries or dictatorship regimes. The competition market on 

the other hand has a large variety of generation companies that provide electricity 

using different resources and have different retail prices. In addition, several retail 

companies exist that are responsible for a distinct number of small customers at dif-

ferent places. It is important to note that no matter what type of market exists, the 

transmission and distribution entities are always owned or operated by the country’s 

governments or nonprofit organizations due to their high sensitivity, hence; the blue 

shade. 

Important Remark: This Thesis will focus on the competitive market, so the up-

coming sections will only be valid for that case. 

2.4 The Operation Chain 

In this section, the way that the electricity market operates will be explained. Elec-

tricity being treated as a commodity with the inability to be stored in large quantities 

due to cost constraints [14],  along with the idea that demand and supply have to 

meet instantaneously to prevent any system failures which would cost huge losses 

led the market to operate on the basis of forecasting.  

The general procedure is as follows, the demand forecasting agencies (retailers) and 

larger customers predict their electricity consumption beforehand and submit their 

predictions to the ISO, the ISO then reviews their predictions and presents the de-

mand capacities to the suppliers. The suppliers, later on, submit their bids which are 

in the form of energy or power depending on the units used in the market and the 

time in which they can provide the electricity in. The market stays open until all the 

demanded electricity is met [15]. The above transactions are always done anony-

mously while being monitored by the ISO to prevent any manipulations which can 

cause enormous profits and losses to different parties.  
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2.4.1 Mechanisms utilized 

Different markets exist in different countries or even different cities within a country, 

and every market tries to optimize its operations using different techniques and pro-

cedures depending on the availability of resources. The mechanisms utilized depend 

on the time frame in which the prediction works; long-term load forecasting (LTLF) 

and short-term load forecasting (STLF). 

2.4.1.1 Long term Load Forecasting 

Predictions carried out by forecasting specialists start to be considered as “long-

term” when the predictions vary from 1 year to 20 years. Such predictions are known 

to be inaccurate due to the high probability of externalities occurring that will disrupt 

the prediction and deem it as invalid [16]. However, these predictions are carried out 

for the purpose of having a general scheme of how much electricity would be needed 

to be prepared in terms of resources [17]. One of the commonly used mechanisms 

that operate on the basis of long-term forecasting is forward contracts. 

2.4.1.1.1 Forward Contracts 

Indicated earlier at the end of the operation chain section that the transactions are 

done anonymously, however it is not the case in this type of mechanism. These con-

tracts are usually tailored agreements done specifically between two parties which 

makes both sides know who are they in business with. These contracts are usually 

carried out between large customers who require a considerable capacity of electric-

ity regularly and reliable suppliers who proved to supply this amount constantly [18]. 

Also, it can be done between ISOs and reliable suppliers to serve as a backup in case 

of any externalities to prevent the market from collapsing. 
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2.4.1.2 Short term Load Forecasting 

This type of forecasting is more accurate and can vary from day-ahead predictions 

(24 hour period) to “X” min windows. Again, the same ideology applies, the smaller 

the time frame, the more reliable the prediction is, due to the decrease in the chance 

of having any externalities. The Day-ahead markets and Real-time markets (interday 

markets), and X-hour markets are the short-term prediction markets that are consid-

ered as the main pillars on which the electricity markets depend. [19] 

2.4.1.2.1  Day-Ahead Markets 

As the name indicates, the day-ahead markets are electricity transactions that are 

being made 24 hours prior to the actual time in which the electricity will be needed 

in an online platform. In this market, the suppliers are committing to a certain settle-

ment of electricity which will be provided at a specific time the next day (24-hours 

later). The end customers to such settlements are kept anonymous to prevent any 

manipulation in the market, and the bids are being met via the ISO [20]. The day-

ahead market usually operates on an hourly basis, i.e. the day-ahead market will try 

to allocate 50 MW to a customer today to be provided from 1 pm to 2 pm the next 

day. 

2.4.1.2.2  Real-Time Markets 

Since the day-ahead market is based on predictions, divergence from the precalculated 

demands may occur, that is why real-time markets existed. Intraday markets are backup 

markets that are operating to ensure that any miscalculations are accounted for [20]. 

After the day-ahead market is concluded,  the real-time market starts and continues to 

operate until a specific time window known as the “Imbalance settlement period”. The 

imbalance settlement period is a time frame that the ISO decides on in which no more 

bids can be presented after it  [21]. This window is different from one market to the other 
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depending on the technology and resources available. The real-time market is continu-

ously monitoring the fluctuations of the demand, and the frequency in which the gener-

ated electricity is being produced, in case of any unwanted or risky fluctuation or dis-

turbance, the ISO which is also governing the real-time market sends dispatch infor-

mation to the generation companies to be ready to account for any failures and ensure 

that the market continues to operate.  

2.5  The Electronic Trading Process 

In this subsection, a detailed example will be explained to connect all the previously 

mentioned terms and entities and provide a better understanding of the general 

scheme. 

 

Figure 2.4. Electricity Bids Example [19] 
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For instance, in a random electricity market, the large customers together with the 

demand forecasting agencies predicted that they would require a total of 500 MW of 

electricity from 1 pm till 2 pm on the 23rd of October 2021. The calculated demand 

was provided to the ISO on the 22nd of October 2021 in the day-ahead market, the 

ISO then reviewed this demand and reached out to the suppliers in an attempt to find 

a match for that specific time frame. Figure 2.4 above shows a  table consisting of 3 

columns, the left column contains a list of different GENCOS varying from A1 to 

E1, whereas the middle and right columns show the corresponding capacity of elec-

tricity that can be provided and its prices respectively. The variation seen in the table 

indicated that in that competitive market example; there is a variety of generation 

companies who use different energy resources and are capable of producing different 

amounts of electricity at different efficiencies which led to different prices [22]. 

Since the matching operation is anonymous, only the ISO is aware of all entities i.e. 

the suppliers don’t know their competition, and also the customers are not informed 

on who is providing electricity. The ISO then starts to allocate the bids according to 

the increasing price of the supplied electricity which means that the electricity will 

be bought from the cheapest supplier to the next until the capacity is met  [19]. In 

the provided example, 500 MW is needed so according to figure 2.4, the cheapest 

supplier (A1)  is worth 10 $/MWh and is providing 250 MW so the ISO will buy 

from him first and then move to the second cheapest one which in this case is B1 

worth 12 $/MWh and providing 200 MW. After buying from A1 and B1 a total of 

450 MW was obtained and what is left is just 50 MW, following the same procedure, 

the next and final supplier in this day-ahead market is C1 with 14 $/MWh and 150 

MW capacity. As a result, the ISO has fulfilled the needed capacity and will then 

assign the market price [Temporary Market Price] (TMP) for this period and that 

will be the corresponding price of the next MW that could be bought, figure 2.5 

below is a graphical illustration of the temporary price decision process.[23] 
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Figure 2.5. Temporary Price Assignment  

 

As indicated in the figure above, the green color resembles the suppliers that have 

participated in the market and were able to sell their full capacity. D in Figure 2.5 

can be considered as C1 in the mentioned example, C1 had a total capacity of 150 

MW and after buying the needed electricity, the next MW will still fall under C1’s 

domain (the semi-grey region in D), which consequently leads to the TMP of 14 

$/MWh and this will be the price presented to the demand side. [23] 

At this point in the day-ahead market on 22nd of October, the electricity (500 MW) 

which is demanded will be sold for the temporary price of 14 $/MWh for the period 

of 1 to 2 pm on 23rd of October. Suppliers A1 and B1 were able to sell all their 

capacity and profited so far 4$/MWh and 2$/MWh respectively. Supplier C1 only 

sold 50 MW out of 150 MW and broke even, and the rest of the generation companies 
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weren’t able to take part in the transactions and are awaiting further notice. The day-

ahead market concluded and the real-time market starts. The real-time markets then 

start to operate and continuously monitor any fluctuations or externalities that may 

alter the predictions.  

Continuing the example, throughout the day (22nd of October), there were some ex-

ternalities, which led to the actual demand being a total of 700 MW;  200 MW ex-

cess. Unfortunately in that case, since the day-ahead market auction was concluded 

and time is getting closer to the actual time that electricity is needed (1 pm to 2 pm 

on 23rd of October), the electricity prices increased and the prices presented in figure 

2.4 are no longer available. 

The difference in prices is due to the following reasons; different GENCOS work 

using different resources that require different machinery, these machines or gener-

ators have different operational costs as well as starting times (Ramp Time) [24]. 

Ramp time is “the amount of time it takes from the moment a generator is turned on 

to the moment it can start providing energy to the grid at its lower operating 

limit “[24].  In the case of the “operational cost” variable, when the electricity sup-

pliers enter the day-ahead market and they don’t succeed in selling their electricity 

whether partially or fully, they always face a vital dilemma of whether or not to keep 

their machines operating in case of an extra need due to some externality as men-

tioned before. If they choose to keep on operating, that means that they worked their 

machines for a longer time frame, and subsequently, their operation costs increase 

leading to a proportional increase in price. 

As for the “Ramp time”, nearly all machines that produce electricity whether from 

fossil fuels such as diesel or renewables such as solar, need an amount of starting 

time to heat and reach their maximum efficiency [24].  

Different power plants with their equivalent ramp time and operational costs are 

shown in table 2.1 and table 2.2 respectively below [24]. The difference tabulated 

below depends mainly on the operational principles of the machinery used in the 

power plants. 
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Table 2.1. Typical ramp and run times for power plants.  

Technology Ramp Time Min. Run Time 

Simple-cycle combustion turbine Minutes to Hours Minutes 

Combined-cycle combustion turbine Hours Hours to Days 

Nuclear Days Weeks to Months 

Wind Turbine (includes offshore 

wind) 

Minutes None 

Hydroelectric (includes pumped 

storage) 

Minutes None 

 

The minimum run time shown in the right column stands for the shortest amount of 

time that the plant needs to operate once it is turned on. Both of these variables (ramp 

time and minimum run time) determine whether or not the power plant is flexible. 

These variables are highly dependent on many constraints and can be considered as 

functions of regulations, type of fuel, technology, etc... The flexibility of a power 

plant will then lead to the type of load that they could serve, either baseload or filling 

the peak demand. [24] 

• Baseload: Is the initially predicted demand (day-ahead market) or the con-

stant electricity needed to maintain the minimum electricity consumption. 

[25] 

 

• Peak demand: This is the electricity demand at its highest and can also be 

considered as the amount of electricity that exceeded the initial predictions. 

[26] 

In other words, as the flexibility of the power plant decreases  (longer minimum run 

times and slower ramp times), they become more suitable for serving the baseload 

energy, while more flexible plants (shorter minimum run times and quicker ramp 

times) are better-suited to filling peak demand.  
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As for the variation in operational costs, a list of different operational costs is tabu-

lated below. 

 

Table 2.2.  Typical operating costs for power plants.  

Technology Operating Cost  ($/kWh) 

Coal-fired combustion turbine 0.02 — 0.04 

Natural gas combustion turbine 0.04 — 0.10 

Coal gasification combined-cycle 

(IGCC) 

0.04 — 0.08 

Natural gas combined-cycle 0.04 — 0.10 

Wind turbine (includes offshore wind) Less than 0.01 

Nuclear 0.02 — 0.05 

Photovoltaic Solar Less than 0.01 

Hydroelectric Less than 0.01 

 

 

To summarize the two tables above, a simple graph can be drawn having operational 

flexibility on the x-axis and operation costs on the Y-axis. Plotted on the graph are 

different powerplants’ technologies. [24] 
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Figure 2.6.  Relative comparison of operating cost and operational flexibility 

for different power plant technologies 

 

Re-visiting the example, that is why, as the time gets closer to the demand meeting 

time (1 pm to 2 pm), generation companies who own technologies with a low ramp 

time are needed. Such types of machinery are known as “Spinning Reserves”, these 

reserves are basically any form of technology that doesn’t involve steam production 

in them such as simple-cycle turbines. These turbines are best suited for quick re-

sponses as indicated in table 2.1 however they have the largest costs as table 2.2 

proves. 

Spinning reserves usually work using natural gases and oils that not only prove to be 

expensive but also produce large amounts of greenhouse gases and heat energy to 

the environment leading to global warming [27]. A graphical illustration below in 
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figure 2.7 shows the difference in carbon dioxide emissions per energy source 

throughout the years starting from 1750  till 2019. [28] 

 

 

Figure 2.7. World's carbon dioxide emissions by fuel type from 1750 till 2019 

 

As figure 2.7 demonstrates, the carbon dioxide emissions of technologies that oper-

ate on gas and oil combined are around 19.98 billion tonnes. [28] 

In the example provided, to match the excess demand of 200MW that was newly 

predicted in the real-time market, the ISO would have to match the bids at a higher 

price under the condition that the suppliers chose to keep their machines operating. 

Not only will some suppliers now provide electricity at higher rates due to their 
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increase in operational costs but also there will be another criterion of suppliers who 

own technologies with low ramp times (spinning reserves) and will also provide 

electricity at a high price using non-sustainable resources. 

In this imaginary scenario, only one intraday market was given as an example (excess 

200 MW), in real life there is a high probability or even absolute certainty that more 

than one intraday market will be entered, and as time gets closer and the marginal 

error in the day-ahead market increases (a considerable amount of deviation from the 

day-ahead market prediction) the need for suppliers who own spinning reserves will 

proportionally increase. 

 

It can be concluded that the forecasting accuracy of the STLF is of great importance 

and can neither be an overestimate nor an underestimate. Also, as the day-ahead 

market’s demand prediction accuracy increases, the number of the intraday markets 

will decrease, and subsequently, fewer spinning reserves will be used leading to an 

overall decrease in electricity prices and a more sustainable economy.  

 

The importance of accurate demand forecasts was emphasized by Bunn and Farmer 

back in 1985 in the United Kingdom. An error of a 1 percent surplus in the electricity 

demand led to 10 million pounds of extra expenses [29]. The magnitude of these 

expenses was 36 years ago, if it is to be propagated to today’s inflation rates, the 

operational costs will be much larger. 

 

That is why constant innovation is needed to improve the accuracy of existing fore-

casting models and regular optimization procedures are needed to come up with su-

perior novelties in an attempt for reaching a more sustainable and stable energy eco-

nomics. 

 



  

 

 

21 

CHAPTER 3  

3. LITERATURE REVIEW  

As concluded in the previous chapter,  achieving an accurate demand forecast is the 

main goal in the electricity market to ensure maximum efficiency in resource alloca-

tions. That is why all previously mentioned entities are continuously hiring highly-

skilled individuals to work on optimizing electricity demand prediction models. 

 

Since the electricity market has been established, numerous models have been put 

into use, even though they all serve the same purpose, the working principles and 

theory behind their operation differ drastically [30]. The prediction models’ princi-

pals will be explained together with the general variables that they are a function of. 

3.1 Energy Models 

To begin with, the demand forecasting models can be classified into several criteria. 

They can be considered as univariate versus multivariate, static versus dynamic. 

Also, the techniques that are being utilized can vary from times series to hybrid mod-

els [30]. 

3.1.1 Univariate vs. Multivariate 

These two terms refer to the dependency of the models on their variables. In practice, 

some of the models depend on a single variable, and in this case, they are identified 

as univariate, whereas on the other hand, multivariate models base their predictions 

on multiple variables ( these variables can be dependent or not). [31] 
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The choice of creating models that are uni or multivariate depends on many factors, 

such as the geographic place, living conditions, and most importantly the intuition 

of the model designer [30]. The general differences between the two models can be 

tabulated in table 3.1 below [32]. 

 

Table 3.1. Differences between Univariate and Multivariate models 

Univariate Multivariate 

Involves a single variable Involves multiple variables 

Does not deal with cause and relation-

ships Deal with cause and relationships 

The major purpose is to describe The major purpose is to explain 

It uses dispersion methods like range and 

variance 
It uses correlations 

It can be illustrated as frequency distribu-

tion 

It can be illustrated as relationships and 

tables 

The results can be shown as bar graphs, 

histograms, pie charts, etc… 

The results can be shown as tables where 

one variable is contingent on other varia-

bles 

Analysis acquire a short time Analysis acquire a longer time 

 

3.1.2 Static vs. Dynamic 

Static or dynamic models are usually implied on energy models that involve a learn-

ing stage then a testing stage. A learning stage is a period in which the machine or 

the model is fed with previously gathered data to create functions that describe the 

data’s variation. 
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The data that is input into the system can be either in a form of a single variable 

(univariate) and in this case, the model will try to create one function that suits the 

variable’s changes, or several variables (multivariate) and in that case, the model 

would be more complicated and will require more time to create several functions to 

come up with reliable trends. In this training phase, there is no difference between 

static and dynamic models. 

After passing through the learning stage, the testing stage starts, where the accuracy 

and reliability of the model’s created algorithm would be tested. The difference be-

tween static and dynamic models starts to appear in the testing period. The differ-

ences can be illustrated in Figures 3.1 and 3.2 below [33]. 

 

Figure 3.1. Static Forecast 

 

Figure 3.2. Dynamic Forecast 
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As shown above, in figures 3.1 and 3.2’s legends, the red dots represent the 

forecasted data, black dots refer to the training data, and the grey dots account for 

the data that is to be predicted.  As the points move horizontally to the right, the time 

increments which are represented by cells in the table increase. The main difference 

lies in the data usage for predicting every next time increment. In figure 3.1 for static 

prediction, the first row presents the training data used to predict the first-time 

increment which is represented by red. When it comes to the second prediction in 

row 2, the previously predicted time increment is colored as black which means that 

the predicted point in row 1 is now considered by the model as part of the training 

data which concludes that as time progresses, the training set is continuously 

increasing since the previous predictions are always being added to the training data 

set. Dynamic models on the other hand stick to the pre-set training data and only uses 

it for predicting all-time increments as shown in figure 3.2 [34]. 

3.2 Inputs 

Different electricity markets are operating all around the globe, each of these markets 

may contain sub-markets that co-exist within. Due to the absolute diversity that is 

available, there is no set list of inputs that can be defined to achieve an efficient 

energy model. 

It is important to note that within one distinct electricity market, demand forecasting 

agencies may use different prediction models that operate on different principles as 

discussed in the previous section as well as their choice of what inputs would be 

utilized, and this is the same scenario for suppliers and ISOs. That leads to the usage 

of numerous models that work with different inputs by different entities all to serve 

one purpose; to predict electricity demand as accurately as possible. 

All types of data are available to all entities at all times, however since the electricity 

consumption is chaotic, the probability of experiencing different types of externali-

ties is infinite, which leads to the fluctuations in the reliability of each model being 
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utilized depending on the nature of the externality. The types of input can fall mainly 

under two categories qualitative and quantitative. [34] 

3.2.1 Quantitative input 

Quantitative inputs are data or variables that are tangible and can be represented by 

numbers [35]. This leads to the ease of feeding such type of data into an artificial 

model. Some of the commonly used quantitative data for electricity demand predic-

tions  are [29]: 

 

• Temperature 

• Humidity 

• Past Consumption 

• Income and price elasticity 

• Number of customers 

• Population 

• Climate factors:  

▪ Dry bulb temperature 

▪ Wet-bulb temperature 

▪ Global solar radiation  

▪ Clearness index 

▪ Wind speeds 

• Energy price 

• Technology and advancements 

• Previous years’ energy’s demand 

• Agricultural production output, industrial production output 

• Population Growth, economic growth, urbanization level 
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3.2.2 Qualitative Input 

The nature of this input is non-numerical, this form of data is gathered through an 

interactive procedure, where one on one interviews, open-ended surveys, methods of 

observations, etc... are conducted and the results of such analysis are presented in the 

forms of categories or clusters of similar individuals. [36] 

 

An appropriate example of such data in the electricity market can be as follows; due 

to the increase in greenhouse gases emissions, the temperature variations are unsta-

ble, and several countries are experiencing unusual heat or cold waves throughout 

the year. In country “X”, new regulations were announced stating an increase in the 

wages for army officers, and there are general neighborhoods in this country where 

the majority of the population are army officers. After the general increase in wages, 

these people could have an increased tendency to increase their electricity consump-

tion in summer or winter in the form of increasing the operation hours of their heaters 

or chillers.  

 

Since no previous data is reporting this new trend of consumption, this behavioral 

change needs to be incorporated through the prediction model, therefore open-ended 

questionnaires or surveys could be carried out to divide the people into groups and 

somehow quantitate this nontangible data to increase the accuracy of the prediction 

model. 

 

To sum up the dissimilarities between qualitative and quantitative Inputs, table 3.2 

can be drawn below. [37] 
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Table 3.2.  Qualitative vs. Quantitative data 

 Qualitative ( Categorical) Quantitative ( Numerical) 

Focus Quality Quanttity 

Method Ethnography/ observations Experiments/ correlations 

Sample Small, purposeful Large and random 

Data collection Interviews and observations Scales and tests 

Analysis Inductive (by a researcher) Deductive (statistical methods) 

Findings Comprehensive, descriptive Precise, numerical 

3.3 Trend Variation 

Regardless of what type of input is fed into the system or what the system’s working 

principles are, any form of data will vary with respect to a pre-set datum (time in 

electricity demand’s case). These variations are of several types; linear variation, 

non-linear variation, and seasonal variation. [38] 

3.3.1 Linear variation 

This variation occurs when one variable is directly proportional to another by a con-

stant factor. This variation is identified graphically when a straight line is seen on a 

graph as shown below in figure 3.3. or by an equation like equation 3.1. 

 

𝑌 = 𝑚𝑋 + 𝑐        (Eq. 3.1) 

 

Where Y is the variable of interest, X is the datum, m is the proportionality constant 

(slope) and C  (Y-axis intercept) is just a constant that is algebraically added to the 

variable. 
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Figure 3.3. Direct linear variation 

 

Figure 3.3 above demonstrates a graphical representation of a simple linear equation 

with a slope equal to 2 and a y-axis intersection of 1. 

3.3.2 Non-linear variation 

As the name implies, non-linear variation is any form of relationship that connects 

two or more variables and is represented by anything other than a straight line. There 

is no general equation for such variation and there are infinitely many illustrations 

of this trend [39]. Some of them are represented below in figure 3.4. 

 

Figure 3.4. Various Non-linear variations 
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3.3.3 Seasonal Variation 

This type of variation is seen in time-dependent relationships. Seasonal variation is 

unique in the sense that it can involve both linear or non-linear variations, however, 

the variance is not constant. Seasonal variations can include multiple trends that keep 

on re-occurring every specific time interval  [40]. A good example of seasonal vari-

ation is what is shown on a heart rate beep on a monitor. 

 

Figure 3.5. Heart Rate Monitor 

 

As shown above, in figure 3.5, the heart’s activity is a simple non-linear variation 

that keeps on repeating itself every specific time interval. 

 

Generally, there are two types of seasonality; additional and multiplicative, the ad-

ditional seasonality is just numbers being added and this can be seen in linear trends, 

whereas multiplicative is shown as a result of a compounding effect of percentage 

growth [41]. Additive and multiplicative seasonality can be shown below in figures 

3.6 and 3.7 respectively. 
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Figure 3.6. Additive Seasonality 

 

As pointed by the red lines in figure 3.6, the difference between the actual values 

(blue) and the forecasted values (orange) are becoming wider as time goes by. 

Whereas in figure 3.7 the difference between the actual values (blue) and the fore-

casted values (orange) are equally spread across the years. [41] 

 

 

Figure 3.7. Multiplicative Seasonality 



  

 

 

31 

3.4 Reliability of the Results 

The studied models and techniques are utilized for the sake of predicting the future, 

and since numerous externalities can occur considering that the predictions are done 

in an uncontrolled environment, the accuracy and precision of the models are crucial 

in the decision process of whether or not the model will be used. 

Also, it is important to note that a direct comparison between models is not possible, 

in view of the fact that different models use different prediction techniques as well 

as different inputs. However, there are general accuracy and precision tests that can 

be applied to all models to have a singular comparison criterion. These tests can be 

in a form of a percentage or a scale where the maximum value is identified, it can be 

set as the smaller the result the better, or vice versa [42]. Some of the commonly 

used assessment methods are: 

 

• Willmott’s Index (WI)  (The Higher The Value The Better) 

• Mean Absolute Error (MAE).  (The Lower The Value The Better) 

• Root-Mean Square Error (RMSE). (The Smaller The Percentage The Better) 

• Mean Absolute Percentage Error (MAPE). (The Lower The Value The Better) 

 

The working principles of these methods will not be discussed in this thesis because 

it is outside the scope of the topic. 

 

After understanding the discrete types of models and the variety of inputs that can 

be utilized for electricity demand predictions together with their different nature, in 

addition to the methods, that validate the models’ results. Different forecasting mod-

els in the literature will be mentioned in the upcoming sections. 
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3.5 Forecasting Models 

There is a wide variety of forecasting models that are being utilized around the globe. 

As previously noted, this variety is due to the fact that these models take economic, 

environmental, and social factors into account which as a consequence leads to sea-

sonal, monthly, daily, and hourly fluctuations in the electricity demand patterns [30]. 

These models are mainly categorized into three main approaches: parametric which 

are Regression and Time-series models, nonparametric that mainly work using arti-

ficial intelligence, and the last category is known as hybrid models that mix both of 

them.  Some of the commonly used parametric models are:  

 

• Time-series models 

• Regression models 

3.5.1 Time-series Models 

Time series models work with any variable that is sequentially changing with respect 

to time. This type of model must require historical data for it to be used and it was 

proved that it works best with seasonal data [43]. In time series analysis, as in any 

other study, the data is considered to contain a systematic pattern (typically a set of 

identifiable components) and random noise (error), which makes the behavior diffi-

cult to recognize [44]. Figure 3.8 demonstrates a time series graph with noise in-

cluded. [45] 
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Figure 3.8. Before and After noise reduction 

 

Filtering away noise is a common approach used in time series analysis to make the 

pattern more smooth. Most time series analysis approaches use some type of noise 

filtering in order to smooth out the pattern. Time series analysis is used to identify 

and analyze the effects of time-related elements on time series values [46]. 

This type of modeling was used for forecasting energy production and consumption 

in Asturias-Northern Spain with a mean percentage error of 1.6 percent [47], which 

is considered as a relatively low error proving to be an accurate estimate. 

3.5.2 Regression models 

The following information is obtained from [48] 

In electricity markets, several variables contribute to the demand predictions and 

these variables are dependent on many other factors (multivariate models), so indi-

rectly demand prediction is dependent on these factors as well. Regression models 

aim to identify which of these numerous factors have a considerable contribution in 

changing the behavior of demand. 
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Regression analysis is a mathematical method of determining which of those factors 

has an effect. It provides answers to the following questions: Which factors are most 

important? Which of them can be ignored? What is the relationship between those 

variables, if there are any?  

In regression analysis, there are two main types of variables, the dependant variable; 

the variable of interest, and there are the independent variables; and these are the 

factors that are thought to alter the variable of interest. For a regression analysis to 

be carried out, data has to be gathered for both the dependant and the independent 

variables, then this data will be plotted against each other with the dependant variable 

on the y-axis. For instance, it was seen that temperature variation contributes to 

changing the electricity consumption (demand), data were gathered for both varia-

bles and were plotted as shown below. 

 

 

Figure 3.9. Electricity demand vs. Temperature 

 

In figure 3.9, the variable of interest ( dependant) which is the demand is plotted on 

the Y-axis whereas the temperature is plotted on the x-axis. It can be understood 



  

 

 

35 

from the graph that as the temperature increases, the demand also increases but by 

what factor is what is important, also the knowledge of how will the demand increase 

if higher temperatures were seen is of great importance, that is why just observing 

scattered data is not sufficient for reaching a reliable conclusion. Regression models 

start first by drawing the best fit line to increase the level of certainty when drawing 

conclusions. 

 

Figure 3.10. Regression line 

The best fit line in red which is drawn in figure 3.8 is named as a regression line. Not 

only does this model draw the regression line, but it also provides an equation for 

this line. 

𝑌 = 𝑚𝑋 + 𝑐 + 𝑒𝑟𝑟𝑜𝑟        (Eq. 3.2) 

 

Eq.(3.2) above is a linear regression equation, regression models may use other 

mathematical operations to explain the best fit line such as multiplication which 

would result in a completely different equation and also a different line shape (curve 

for example). However, for the sake of simplicity, a linear example was given. Fol-

lowing this formula, one can know the amount of electricity demand when the des-

ignated 0 scaled on the x-axis is reached, the factor by which the demand increases 

when the temperature increases, and also it provides an error term since the best fit 
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line is not 100 percent accurate. This error term serves as a criterion of whether or 

not the independent variable can heavily affect the dependant variable’s behavior as 

well as an indication of whether the prediction is accurate or not. The mentioned 

scenario is an example of a linear trend, however, regression models can deal with 

non-linear and seasonal data as well. The type of regression model that deals with 

linearity is named as Linear Regression Models (LRM). 

The mentioned example included only one variable but in practice, there are n num-

ber of variables that are to be tested, and a more general equation can be listed below 

[49]: 

 

𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽) + 𝑒𝑖        (Eq. 3.3) 

 

Where 𝑦𝑖 is the dependent variable, 𝑥𝑖 is the independent variable, 𝛽 are unknown 

parameters and 𝑒𝑖 are the error terms. The error term is usually represented using the 

𝑅2 method. 

 

Regression models were used to study the relationship between several economic 

factors and annual electricity consumption in northern Cyprus. A correlation was 

reached connecting energy consumption with the number of customers, the price of 

electricity, and the number of tourists. The results included 𝑅2 equal to 0.930 which 

indicated that the model including these factors will have a very strong predictive 

ability and can be used to forecast future annual electricity consumption. [50]. 

Also, a multiple linear regression model (MLR) was implemented by Haida & Muto 

in order to predict the daily demand peak values throughout a year utilizing transfor-

mation functions to deal with the non-linear correlation between temperature (inde-

pendent) and load (dependant).  [50] 
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3.5.3 Machine Learning and Artificial intelligence Approaches 

In this section, non-parametric approaches will be discussed and numerous applica-

tions where the models were applied will be mentioned. The structure of this section 

will be a bit different from the previous ones, since the machine learning models are 

more complicated, covering some of the theories behind them will be difficult, how-

ever relevant theory for the proposed models will be explained in detail in the up-

coming chapters. 

Over the past twenty years, techniques involving computational intelligence have 

been extensively used in electricity demand forecasting (especially ANN). ANN has 

been the focus of experts due to its unique ability to model non-linear behaviors of 

load series. D.C. Park et al. were one of the earliest authors who applied ANN on 

STLF, in their paper, highly-accurate results were presented for 1-hour and 24-hour 

(day-ahead) demand predictions as well as peak load values using the data that was 

presented by Puget Sound Power and Light (an energy utility company based in the 

US). [51] 

Other researches such as [52], used weather variables like temperatures, wind speed, 

and cloud cover to reduce the forecasting error. They plugged in 51 different scenar-

ios for each weather variable into the system using data from England and Wales and 

were able to get accurate results for 10-day ahead forecasts, however, the results 

obtained were underestimates of the actual demand yet it was considered a more 

reliable model than models that utilize only one weather variable with one scenario. 

The method they introduced is known as “weather ensemble”.  

As time progressed, NN gained higher popularity, and attempts of improving its per-

formance were the main road that the industry was taking. For example, bayesian 

frameworks were added by the specialist to aid in identifying which type of ANN 

will be used and assign the number of inputs together with the number of hidden 

layers that the ANN will consist of. [53] 

https://ieeexplore.ieee.org/author/37275453300
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Nonlinear autoregressive models with exogenous inputs (NARX) are distinct forms 

of neural networks that are composed of an optimized architecture that reduces the 

feedback time, they have been recently used in short-term load forecasting however 

the studies discussing their performance are limited. 

Support Vector Machines (SVM) is also a well-known family of Machine Learning 

approaches, under its umbrella, Support Vector Regression (SVR) is a commonly 

used approach for demand forecasting that has started to be implemented since the 

beginning of the current century. Mohamed Ahmed Mohandes wrote one of the first 

papers that applied SVR for STLF, in his research he also compared SVR with Auto 

Regression models (AR) for one-hour load forecasting in Saudi Arabia [54]. SVM 

was also put into comparison with ANN, Guo et al. used both models to forecast 

monthly electricity in Hebi province in China, and concluded SVM’s superiority 

[55].  

R. Weron stated in his book “ Modeling and forecasting electricity loads” that SVM 

‘s speed and accuracy depend heavily on the type of input that is being fed into it, 

which led to the implementation of attribute reduction models to SVM to counter 

such a problem [56]. Other methods were suggested in [57], where the usage of the 

simulated annealing approach was utilized for finding the optimum input parameters 

for SVR. 

SVR and ANN are the widely and commonly used techniques in the market, how-

ever, multiple new approaches for STLF are being introduced by the day that also 

includes artificial intelligence such as fuzzy logic (FL), chaos models, or a combina-

tion of them.[58] 

Also, it is important to note that there exist regression models that are not considered 

as parametric approaches and they include heavy computational work. In spite of the 

fact that they are named as regression, their functions are directly generated using 

the data itself without any need for parameter estimation. This method was carried 

out in [59] using kernel estimators rather than assuming a particular distribution. 

https://www.researchgate.net/profile/Mohamed-Mohandes?_sg%5B0%5D=6eWlSSAhOPagINCGK43FiChF3w14kl3zhbg4__X77JNka-dRiM8HR5mmemMn9p5D_tqn-AE.JnkibGDMa2ULtkxHz0OEqg6IxU45eUhIjQC68tbnJBmd32T2Zm8Q066f3DONm4xRkrRXAthMgMA4bbaNQj910g.IgGB_dXd-B7aJ4pPnJvImZyia0yTBeXnp2u46VP5dK5Iky_v-rLJ_Rv4g0gsdo7gCtfmcdYt2fhU4dO-rFVL7Q&_sg%5B1%5D=9xqr8LTK6eKVIFv7Sw7xqMsiclyXpJnRJWQWEY0jXQtBvtAQG1VIt30Mh3J9o4K1Y-VzI5E.7fCg2JS6vOMdhhKHphjofC7XMStygPCROfEFR4zH11kSHXHV6C0VdtpmKhr3EUgux29aP2Z-2lItWWtGGuC2aw
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3.5.4 Hybrid Models 

As mentioned earlier in the introduction, each of the models, whether they are para-

metric or nonparametric have their strengths when dealing with specific data and 

also weaknesses. In order to deal with a wide variety of variables that have different 

behaviors (Linear, nonlinear and seasonal), hybrid models were introduced. Hybrid 

models combine different models to ensure maximum output efficiency. There is no 

set of mixtures that Hybrid models consist of, the literature is continuously working 

on finding new combinations that would suit best the type of data used. 

Fuzzy logic (FL) and ANN were mixed in a way that FL is used for the training 

phase of a NN for STLF and resulted in a new model known as fuzzy Neural network 

(FNL), the results were promising, it was found that FNN was considerably faster 

than the conventional neural network while still preserving the accuracy.[60] 

Another variation of this combination is known as evolving fuzzy neural network 

(EFuNN) which was applied to half-hourly load data to forecast two days ahead. 

This proposed hybrid model was then compared to ARIMA and ANN models and 

proved to be more accurate. [61] 

ARIMA and ANN were combined to capture linear and non-linear trends in monthly 

peak loads for Jeddah, Saudia Arabia. The ARIMA served as the initial forecast and 

then the resulted data was fed into an ANN which resulted in accurate results [62]. 

Related work was seen in a combination between ARIMA, SVR, and cuckoo search 

algorithm (CSA) but in this method, the ARIMA results are then fed into SVR to 

capture the residual non-linear components [63]. 

As it can be concluded, there can be infinitely many integrations that result in a hy-

brid model. These hybrid models have proven to be superior according to the litera-

ture. The aim of this thesis is to apply a possible combination of models that would 

be suitable for the data obtained, to reach better and more accurate forecasts
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CHAPTER 4  

4.  EMPIRICAL DATA AND CASE STUDY 

In this chapter, the decision process that was involved in the procedure of choosing 

a case study, and obtaining the reliable relevant data for the work-frame will be 

discussed. In addition, important remarks and comments will be noted for the data 

used and the real-life factors that contributed to it. 

4.1 The Market 

To begin with, the workflow started with the choice of working with either a vertical 

market or competition market, it was concluded that a competitive market will be 

best suited for the proposed idea since it contains numerous dynamics that will 

contribute to superior results if the model operates optimally. 

4.2 Type of Forecasting 

As discussed earlier, as the time domain for the prediction decreases, it is expected 

that the obtained forecast would be of greater accuracy since fewer externalities are 

anticipated to occur, which led to the decision of choosing to apply short-term load 

forecasting. Under the short-term forecasting, Day-ahead markets were chosen to 

work with. 

4.3 Case Study 

In an attempt to find data that suits STLF for a day-ahead market in a country that 

operates its electricity markets in a competitive nature, reliable historical data was 
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found that contains 4 years worth of electricity consumption and pricing starting 

from the first of January 2015 till 31st of December 2018. The electricity consump-

tion data was obtained from the European Network of Transmission System Opera-

tors for Electricity ( ENTSO-E), whereas the settlement prices were gathered from 

the ISO responsible for managing the Spanish market Red Eléctrica España. A sam-

ple of the data found is shown below in figure 4.1 [64]. 

 

 

Figure 4.1. Sample Data 

 

The data represented above in the time column is in an hourly fashion which indi-

cates that the presented data is for the day-ahead markets; as mentioned in the earlier 

sections,  that were entered throughout these 4 years. The other four columns repre-

sent the corresponding forecasted load and the actual load together with the fore-

casted price (TMP) and the actual price. It can be seen that none of the predicted 

values are equal to the actual ones and as explained in the electronic trading process 

section, the actual prices are more expensive indicating that intraday markets were 
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seen. This thesis’s proposed model aim to decrease the deviation between the actual 

and forecasted load, to see a corresponding decrease in the actual retail prices for 

electricity. This data will be used as a reference to the final results derived from the 

model to compare the performance of the model to the applied methods in the market 

between the years 2015 and 2018. Also, the actual data presented in figure 4.1 will 

be fed into the model to create correlations between the inputs chosen and obtain the 

desired results. 

4.3.1 Input Type 

At this point, the output or desired data is obtained, the input data that will be fed 

into the system is now of interest. The decision of whether to choose qualitative or 

quantitative data was quite easy, carrying out surveys or questionnaires for under-

standing the behavioral consumption of Spanish consumers in the years 2015 till 

2018 now in 2021 is unrealistic, also, extensive research was carried out to find such 

data however all attempts were in vain, which led the methodology to shift towards 

quantitative data. 

In the literature review carried out, it was seen that one of the most commonly used 

quantitative types of inputs is weather conditions, also reliable results were obtained 

from methods containing them as inputs.  That is why weather conditions and varia-

bles were chosen as the inputs for the proposed model. Another important factor that 

contributed to this choice is that; the ENTSO-E which is the responsible party for 

predicting the electricity consumption for most of Europe, and is the source of the 

used data, is also using weather conditions as their inputs for prediction [65]. Having 

common inputs with the reference method will flatten out the comparison between 

models. 

After choosing to work with weather conditions as inputs, an obstacle was encoun-

tered which is, the fact that the goal is to predict electricity demand for Spain as a 

country, but weather conditions vary geographically within the country. To 
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overcome such a problem, it was seen that it is safe that instead of feeding all the 

weather conditions of all cities and neighborhoods into the model which will result 

in a more complicated model that will require a long time frame to produce results, 

the top 5 cities’ (in terms of urbanization and population) weather conditions will be 

enough or will give accurate estimates. Shown below, is the list of the top 5 cities in 

Spain in terms of population by the end of 2018. [66] 

 

 

Figure 4.2. Top 5 cities in terms of population in Spain 

 

As figure 4.2 tabulates, the five largest cities that will be used in the model are Ma-

drid, Barcelona, Valencia, Seville, and Bilbao. 

 

Later on, the search was initiated to find the weather data for these 5 cities and it was 

found to be available in weather API; an application that provides current and his-

torical weather data on a global scale. Filtering the useful weather data for these cities 

in Spain and connecting it to the same time domain as the data gathered from the 

ENTSO-E, a sample of the resulted data presenting Valencia is shown below in fig-

ure 4.3. [67] 
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Figure 4.3. Weather Data
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In figure 4.3, the same time distribution is seen and the main weather variables that 

are included are 

• Temperature 

• Minimum temperature 

• Maximum temperature 

• Pressure 

• Humidity 

• Wind speed 

• Wind direction 

• Rain in the last hour 

• Rain in the last three hours 

• Snow in the last three hours 

• Clouds 

• Weather id 

 

After gathering all the required data for the proposed model to operate with, the next 

stage of the operation was initiated. As indicated earlier, the focus of this model will 

be to accurately predict electricity consumption for Day-ahead markets, however 

with all the data available, there is a total of 1460 days each having 24 hours in them, 

leading to a total of 35,040 day-ahead markets that were previously entered. At this 

point of planning, justified filtering processes were applied to the data to reach the 

specific domain to which the model will be applied. 

4.4 Justification 

This section will serve the purpose of proofing the reliability of all the data gathered 

as well as the decisions made to reach the specific day-ahead market that the model 

will be tested as a justification for the models’ results. 
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4.4.1 Competition in Market 

First of all, figure 4.4 shows the different types of generation companies that exist in 

the Spanish electricity market. [68] 

 

 

Figure 4.4. Different GENCOS in Spain 
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In figure 4.4, the different shades of colors present in the bar chart correspond to 

different generation companies’ types as shown in the legend. The Spanish local time 

is plotted on the x-axis where the energy production is on the Y-axis. These analytics 

are published by ENTSO-E, showing the competitive nature of the electricity mar-

kets in Spain. 

4.4.2 Time-domain 

The model that will be proposed will include non-parametric approaches such as 

machine learning algorithms and these methods require as mentioned earlier a train-

ing stage and a testing stage. 

After gathering the data from January 2015 till December 2018, the aim was to plug 

in all of this data in the training phase however, the search for more recent data cov-

ering the last years and also having the same format wasn’t yielding. This led to the 

division of the obtained data into two parts, one for training and the other for testing.  

It was proven by the literature and research, that for AI and Machine learning, the 

accuracy of the model heavily depends on the amount of data present for the training 

period [69]. Also, the amount of data is proportional to the purpose of the project, if 

the model is of high importance and large deviations between forecasts and actual 

data will cause severe consequences, it is crucial to allocate as much data as possi-

ble[70]. 

Electricity demand prediction is a vital procedure in a country’s economy and devi-

ations may cause a large number of materialistic losses as well as an unsustainable 

operation chain which contributes to global warming. Not only are the effects felt in 

terms of resources, but also, deviations may cause power cuts, and depending on the 

industry, human lives may be endangered (Hospitals). Consequently, for the availa-

ble data, it was decided that the first three years' worth of input will be fed into the 

system during the training phase. 
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Studying the data for the fourth year (2018) and attempting to narrow down the scope 

of interest even more, trends of increase in electricity consumption and increase in 

forecasted errors during the summer period were noted. H. E. Thornton et al. in their 

research “The role of temperature in the variability and extremes of electricity and 

gas demand in Great Britain” concluded that the extreme elevation in temperatures 

in summer has led to unforeseen increases in electricity demand [71]. As a result, the 

time domain of interest has shifted specifically to the summer season in 2018 where 

possible frequent deviations between the actual and forecasted load are to be noted. 

Studying the data available, several days in the summer period of 2018 proved to be 

good candidates for the model’s application. Their eligibility was depending on how 

bad the forecasts were on that specific day i.e. the bigger the deviations, the better. 

Some of the days that were chosen are the 16th of June, 21st of July, 1st of August, 

and 15th of August, their schematics are presented below from figure 4.5 to figure  

4.8 respectively. [68] 

 

 

Figure 4.5. Actual vs. forecasted load for 16th of June 2018 
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Figure 4.6. Actual vs. forecasted load for 21st of July 2018 

 

 

 

Figure 4.7. Actual vs. forecasted load for 1st of August 2018 

 



 

 

 

 

50 

 

Figures 4.5 till 4.7 all show deviations between the forecasted and actual demand, 

the number presented in each of the pictures were chosen according to the highest 

peak demand seen on that day, if a closer look is taken considering the peak demand 

values, it can be seen what H. E. Thornton et al.’s conclusion was right, as the tem-

perature increases ( as time flows into the summer season) the deviations increase 

 

 

Figure 4.8. Actual vs. forecasted load for 15th of August 2018 

 

In all of the figures presented above, the local time was plotted on the X-axis and the 

load in MW was on the Y-axis. The blue lines represent the actual demand whereas 

the orange corresponds to the forecasted values. Figure 4.8 shows extremely high 

deviations at almost all times during the 15th of August 2018. One of the highest 
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deviations seen was at 8 pm local time as indicated in figure 4.8. Another graph 

representing the day-ahead prices for electricity sold on that day is shown in figure 

4.9 below. Again, on the x-axis time is plotted, and on the other hand, the price per 

MWh in euros is plotted on the Y-axis. [68] 

 

Figure 4.9. Day-ahead prices for 15th of August 2018 

 

 

As expected since large deviations were seen between the actual and forecasted de-

mand, the market price has also increased indicating that several intraday markets 

were entered. 
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Figure 4.10. Energy Allocation for 15th of August at 8:00 pm 
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Figure 4.10 shows the electricity capacities there were allocated for balancing the 

demand at 8:00 pm on the 15th of August 2018 as shown by the cursor [68]. Different 

colors represent the amount of energy allocated in different markets. It can be seen 

that the large deviation shown in figure 4.8 led the market to enter 6 intraday markets 

as indicated in figure 4.10. As derived before in prior sections, as more intraday 

markets are entered, the electricity prices increase, and the need for using spinning 

reserves which are not sustainable and more expensive will be inevitable, which was 

the case in figure 4.10 where reserves were used to satisfy 445 MWh. The entrance 

in several intraday markets and the usage of reserves all led to the high electricity 

price for 8:00 pm as illustrated in figure 4.9. 

 

The dependency of the electricity prices on the number of intraday markets entered 

and spinning reserves capacities utilized is huge, and these factors are inversely pro-

portional to the accuracy of the forecasts. It can be seen that using the same forecast-

ing techniques on the same time-domain (15th of August 2018) but with higher ac-

curacy can lead to completely different results. Looking back at figure 4.8 and 4.9,  

at 1:00 am the deviations between the actual and predicted demand were minimal, 

and also the day-ahead price was considerably low in comparison to the day ahead 

price allocated for 8:00 pm. The energy allocations for 1:00 am are given below in 

figure 4.11 [68]. 
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Figure 4.11. Figure 4.10. Energy Allocation for 15th of August at 1:00 am 
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Figure 4.11 shows that with better prediction, only two intraday markets were en-

tered and no reserves were used. The difference between 8:00 pm energy allocations 

and 1:00 am energy allocations is tabulated below in Table 4.1. 

 

Table 4.1. Prediction Accuracy Outcomes for 8:00 pm and 1:00 am 

Criterion 08:00 01:00 

Number of intraday Markets 6 2 

Reserve capacity 445 MWh 0 MWH 

Money Spent More Less 

Time Spent More Less 

Sustainability Not sustainable Sustainable 

Overall Decision Worse Better 

 

It can be concluded that with a better prediction, the overall performance of the mar-

ket will be more sustainable in terms of energy usage, time consumption, and econ-

omy. 

This thesis will use the weather variables and the data gathered to create a hybrid 

model that will focus on achieving a more accurate and superior prediction for STLF 

in Spain in the last quarter of 2018. The data will be divided into parts, testing and 

training data, the training data will include all the days until the 1st of August 2018 

and will be tested on the day of interest till the end of the year.  

In the upcoming chapters, the applied models with their theoretical backgrounds in-

cluded in the proposed methodology will be explained and the results will be pre-

sented and commented on. Also, the proposed model’s performance will be com-

pared to the applied model in real life 
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CHAPTER 5  

5. APPLIED MODELS 

In this chapter, the working principles, theory, and governing equations of the ap-

plied models will be discussed in a detailed manner. Four models are applied in total 

namely; ARIMA, LSTM, ε-SVR, and ANN. According to the way of implementa-

tion that will be discussed in chapter 6, ARIMA is considered to be a parametric 

model whereas, on the other hand, ε-SVR, LSTM, and ANN  are both parametric 

and non-parametric. 

5.1 Autoregressive Integrated Moving Average Model  

Autoregressive Integrated Moving Average (ARIMA)  models have been introduced 

by Box and Jenkins in 1976 and have been used for forecasting time series models 

since then [72]. Before going through the theory behind the model it is important to 

touch upon the family of models that ARIMA belongs to, which is AutoRegression 

type models (AR) models. 

5.1.1 AR Models 

AR Models are forecasting models that don’t include any external inputs (features) 

but rather focus only on the target value (value of interest). These models are time 

series models that study the trends and behaviors of the target value using its past 

values and utilize them to predict the future ones. Having this operational principle, 

the performance of the result is solely dependent on the quality and accuracy of the 

historical data available (Training Sample). Also, the end performance of these mod-

els is graded according to the predicted values (Test Sample) [73]. 
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One of the early versions of AR models is known as Autoregressive Moving Average 

[ARMA]. The AR process is responsible for dealing with random data and predicting 

their future values based on historical data, whereas the MA process mitigates the 

effects of random, short-term variations over a specific time frame by constructing a 

series of averages of distinct subsets of the whole data set and calculating the moving 

average [72]. These models are denoted using two important parameters p and q and 

are represented using the notation ARMA(p,q) and described using the following 

equation. 

 

�̇�𝑡  − 𝜙1�̇�𝑡−1  −  … − 𝜙𝑝�̇�𝑡−𝑝  =  𝜖𝑡 + 𝜃1𝜖𝑡−1  +  … +  𝜃𝑞𝜖𝑡−𝑞   (Eq. 5.1)  

  

Presented in the equation above is a series of different parameters, �̇�𝑡 =  𝑦𝑡  −

µ where µ is the mean of the whole process.  �̇�𝑡   represents a stationary series 

of inputs, 𝜙 and 𝜃 are coefficients for the autoregressive and moving average 

parameters respectively, p and q on the other hand are for denoting the order of 

the autoregressive and moving average parameters. In any forecast as mentioned 

before, errors exist, these random errors are included in the 𝜖𝑡 .When considering 

these errors, a general assumption is made which is that these errors are 

considered to be distributed  uniformly as a white noise process with a mean of 

0 and a constant standard deviation of 𝜎2, they are also considered to be inde-

pendent of each other. Another form of notation for these errors is WN(0, σ2). 

5.1.2 Seasonal AutorRegressive Integrated Moving Average 

Having understood the general concept of the AR models, now a dive through the 

theory behind the ARIMA model would be more constructive. ARIMA models are 

basically ARMA models that are simpler in nature and include a notion of integration 

within [72]. ARIMA models can be categorized into two categories; seasonal and 

non-seasonal, these identifications depend on whether or not the model will be able 
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to deal with seasonal variation in data. The general notation for the Autoregressive 

Integrated Moving Average model is expressed as ARIMA (p,d,q) where p and q are 

the same for AR models and d accounts for the number of times that differencing 

were applied to the data. The differencing term resulted from the concept that AR 

and MA processes work with stationary data(“Stationary data has the property 

that the mean, variance, and autocorrelation structure do not change over time”) 

[74]. And since in reality, some data may be non-stationary, differencing has been 

introduced. Following this logic, if data is presented for which the ARIMA model is 

to be applied on and was found to be stationary, the “d” term would be equal to 0. In 

the case of the seasonal ARIMA, it is denoted as SARIMA(p,d,q)(P, D, Q), where 

the capitalized parameters are equivalent to the lowercase but for the seasonal data, 

i.e. P and Q resembles the Autoregressive and Moving Average processes for the 

seasonal data and D is the differencing for both seasonal and non-seasonal data. 

Equations 5.2 till 5.7 will exhibit the mathematical interpretation of the model. [72] 

 

𝜙𝑝(𝐵)Φ𝑃(𝐵𝑠)(1 −  𝐵)𝑑(1 − 𝐵𝑠)𝐷�̇�𝑡 =  𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝜖𝑡    (Eq. 5.2) 

Where: 

𝜙𝑝(B) = 1 – 𝜙1 B −  𝜙2𝐵2 − . . . – 𝜙𝑝𝐵𝑝       (Eq. 5.3) 

 

Φ𝑃(𝐵) =  1 − Φ1𝐵 − Φ2𝐵2 − . . . − Φ𝑃𝐵𝑃    (Eq. 5.4) 

 

𝜃𝑞(𝐵) =  1 −  𝜃1𝐵 − 𝜃2𝐵2 − . . . − 𝜃𝑃𝐵𝑞    (Eq. 5.5) 

 

Θ𝑄(𝐵) =  1 −  Θ1𝐵 − Θ2𝐵2 − . . . − Θ𝑄𝐵𝑄    (Eq. 5.6) 
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Φ and Θ are coefficients for the seasonal autoregressive and seasonal moving 

average parameters respectively, whereas B corresponds to what is known as 

the backshift operator which is responsible for representing the lagged values 

in the time series representation of the variable of interest.  In other words ; 

 

𝐵 ∗  𝑦𝑡  =  𝑦𝑡−1            (Eq. 5.7)     

   

In all the previous equations, any terms that include lowercase parameters are for the 

non-seasonal data whereas the opposite is true. For a successful implementation of 

the ARIMA model on data, the data needs to be processed in a specific way to yield 

accurate and reliable results. This mentioned preprocessing of the data stage will be 

explained thoroughly in the next chapter.   

5.2 Recurrent Neural Networks 

The human brain is considered to be a wonder and their ability to recall information 

instantly when needed has always been the main feature that the experts are trying 

to memic in their machine learning or AI algorithms. When humans are required to 

retain a piece of specific information from their brain, they don’t start from scratch 

i.e. they don’t have to start thinking from the day they were born till the time the 

information needed was saved into their brains.  

A conventional NN does not have a memory mechanism and thus they consider each 

input on its own irrespective of what came before. Therefore in an attempt to main-

tain an internal state which serves as a memory providing context to the current input 

the creation of what is known as Recurrent Neural Networks (RNNs). [75] 

RNNs were created to tackle such a problem where a loop mechanism was added to 

NNs and a saving feature was obtained. A simple schematic of  RNN is shown below. 
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Figure 5.1. Recurrent Neural Network 

 

Figure 5.1 shows one chunk of RNN denoted by A, this block receives an input data 

of  𝑋𝑡 and outputs a value of ℎ𝑡. The loop serves the purpose of passing information 

from one part of the network to the other. A complete RNN network (chunk)can be 

considered as a chain of identical blocks as the one illustrated in the prior figure, 

each conveying a message to its successor. Figure 5.2 will expand the chunk shown 

previously and will show the n components that lie within.  

 

 

 

Figure 5.2.An unrolled recurrent neural network. 
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As it can be interpreted from the figure the RNN consists of a long chain of identical 

recurrent neural networks that are ordered sequentially where information is being 

sent from one point to the other after the processing stage, hence the name of Recur-

rent Neural Networks. 

This architecture of Neural Networks has been widely used in the past decades and 

was seen in a variety of industries such as speech recognition, language modeling, 

translation, and many more [76]. The Loop feature in the RNNs introduced the idea 

that such networks could be able to save the information and connect them however 

unlike the human brain, problems of Long-term Dependencies had risen. 

 

Figure 5.3. Prediction of 𝒉𝟑 

 

The ability to predict information from previously saved data is possible and proved 

to contain a high level of accuracy, however, this isn’t always the case. It was found 

that the accuracy of the prediction depends highly on where and when the relevant 

information needed for prediction was stored. In figure 5.3 for example, ℎ3 was the 

value of interest and the information relative for its prediction were 𝑋0and 𝑋1 and in 

that case, the model was able to retrieve the information successfully since the gap 
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between them is small. Yet, when a new prediction at a later time required the same 

relative information the results were completely different. 

 

Figure 5.4. Prediction of 𝒉𝒕+𝟏 

 

When the gap between the target value (prediction) and its features (relative inputs) 

increases, the ability of RNN to connect them decreases in other words as indicated 

in the figure above for ℎ𝑡+1, when a long-term memory is needed for prediction RNN 

fails to give out results. This phenomenon was studied by  Hochreiter in  1991 and it 

was found that one of the main reasons to why such a problem exists is due to a 

gradient decay in terms of transfer of information. [77] 

Trying to come up with solutions to such problems, Hochrieter and Schmidhuber 

reached a breakthrough and introduced a new form of RNNs known as Long short 

term memory in 1997 [78] and this RNN had no problem remembering information 

for a long period of time. 

5.2.1 Long Short Term Memory (LSTM) 

This section’s information was gathered from [79]and [80] 

http://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
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Normal conventional RNNs consist of a series of modules as mentioned earlier with 

one neural network layer that applies the tanh function as shown in figure 5.5, LSTM 

being an upgrade consists of 4 layers of neural networks within one of its modules 

as figure 5.6 indicates. 

 

Figure 5.5. Repeating Module in a standard RNN 

 

 

Figure 5.6. Repeating module in LSTM with 4 layers 
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There are a series of colored blocks and lines that are flowing from one point to the 

others their interpretations can be explained simply in figure 5.7 below. 

 

 

Figure 5.7. Components' meanings 

 

Where the orange boxes presented in figure 5.6 are neural network layers that are 

responsible for applying a specific function to the data, pink circles represent the 

mathematical operations that the data will undergo, black lines with arrowheads rep-

resent vectors moving towards a specific direction, two arrowheads meeting means 

they concatenate while two vectors parting ways means that they were copied and 

proceeded towards two different directions. 

 

Looking at figure 5.6, the horizontal line at the top is considered the most important 

key in an LSTM module, it is known as a cell state and it can be seen as a conveyer 

belt that runs above the whole operation chain in the module. In this line, minor linear 

interactions are applied such as multiplication and addition, but mainly it serves as a 

non-congested path from the beginning to the ending of the module where infor-

mation can flow easily without facing any changes. In this cell state, the previous 

output vector is passing and denoted by 𝐶𝑡−1.  
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Figure 5.8. LSTM Cell State 

 

The initial step in any LSTM module is to decide what information is to be kept and 

what is to be forgotten from the resulted output of the previous neighbor module. This 

decision is taken in what is known as the forget gate Layer. It is important to note that 

for every module an output vector is produced and is copied and sent to two direc-

tions, first is as an input to the other module (towards the forget layer) and will be 

denoted as ℎ𝑡−1 and the other direction is towards the cell state and in that case, it 

will be denoted as 𝐶𝑡−1. This procedure can be illustrated in figure 5.9 below. 

 

 

Figure 5.9. Forget Gate Layer 
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This forget layer consists of a sigmoid function, this layer is fed with both the input 

vector 𝑋𝑡 and the previous output vector from the module ℎ𝑡−1 and maps it to the 

range between 0 to 1 where 0 is to be forgotten and 1 is to be of the highest im-

portance and the rest are scaled accordingly. The resulting vector is denoted by 𝑓𝑡 

and can be shown algebraically in equation 5.8 

 

𝑓𝑡 =  𝜎(𝑊𝑓 . |ℎ𝑡−1 , 𝑋𝑡 | + 𝑏𝑓)      (Eq. 5.8) 

 

Where 𝑊𝑓 is the weight of forget gate neurons, 𝑏𝑓 are biases of the forget gate and 

𝜎 is the sigmoid function.  

 

After filtering the unneeded information from ℎ𝑡−1, LSTM turns its focus to what is 

the new information that needs to be obtained from the input vector 𝑋𝑡 and stored in 

the cell state. This operation is carried out in the input gate layer. 

 

Figure 5.10. Input Gate Layer 

 

As indicated in figure 5.10, this layer consists of two neural network layers, a sig-

moid and a tanh. A copy of the input vector and the output of the previous module is 
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again recopied to two directions one entering the sigmoid function again to assign 

weights for the importance of the data and the result is a vector 𝑖𝑡 whose values are 

between the range of 0 and 1, and towards the tanh function the creates a new can-

didate input 𝐶�̃� whose vector values are between 1 and -1. The neural networks lay-

ers’ equations are shown below: 

 

𝑖𝑡 =  𝜎(𝑊𝑖. |ℎ𝑡−1 , 𝑋𝑡 | + 𝑏𝑖)       (Eq. 5.9) 

 

𝐶�̃� =  tanh (𝑊𝐶 . |ℎ𝑡−1 , 𝑋𝑡 | + 𝑏𝐶)     (Eq. 5.10) 

 

After  these output vectors 𝐶𝑡 , 𝑖𝑡 , 𝑓𝑡 are obtained, the LSTM will combine them, 

update the cell state  𝐶𝑡−1and apply the needed adjustments. Figure 5.11 shows that 

first the cell state is multiplied with the forget gate’s vector output and then multiply 

the outputs vectors from the input gates together, and the product resulting from this 

multiplication will be added to the cell state.  

 

Figure 5.11. Linear operation application 
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 𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1+ 𝑖𝑡 ∗  𝐶�̃�      (Eq. 5.11) 

 

By successfully multiplying the forget gate with the cell state, the resulting vector 

will include the needed information from the previous output and the unnecessary 

information will be dropped. Later on, when the product vector from the input gate 

will be added to the cell state, the newly gathered information from the input will be 

added to the cell state.  

After the new cell state is updated, the decision of what to output comes next, at this 

point the cell state is copied towards two directions one which is along with the cell 

state towards the second module, and it will start to be  considered as  𝐶𝑡−1 and the 

other will pass towards the output gate which includes a tanh function where the 

vector will be  multiplied by the output of a sigmoid function that will result in a 

filtered form of the updated cell state and will be referred to as  ℎ𝑡 in this current 

module and ℎ𝑡−1 in the next. This can be seen below in figure 5.12. 

 

Figure 5.12. LSTM Output Gate 

 

By passing it through the tanh function, it will be remapped to the range of 1 and -1 and 

the resulting vector will be multiplied by the output of the sigmoid function to ensure 

that the output includes only the information that was deemed beneficial. The governing 

equations for the output gate are given below.  
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𝑜𝑡 =  𝜎(𝑊𝑜. |ℎ𝑡−1 , 𝑋𝑡 | + 𝑏𝑜)      (Eq. 5.12) 

 

ℎ𝑡 =  𝑜𝑡 ∗ tanh(𝐶𝑡)         (Eq. 5.13) 

 

This chain of operation was in one module, the LSTM  keeps on repeating this for every 

piece of new information until the prediction needed is reached. By understanding this 

model, it can be said that LSTM is one of the closest NNs that can mimic what a human 

brain does, LSTM basically remembers every important piece of information fed to it 

and forgets what is not useful leading to a continuous freeing of space for new data to 

be stored. Moving to the upcoming models that will be applied, Support Vector Re-

gression and ANN will be discussed next.  

5.3 ε-Support Vector Regression 

SVR models are arguably one of the most powerful commonly applied models for 

predictions. SVR is from the Support Vector Machine (SVM) family, SVMs are used 

for classification problems which means that they deal with categories and classes 

consisting of discrete values whereas, on the other hand, SVR deals with numerical 

continuous data. Both of these models have proved their accuracy and precision since 

they were first introduced by Vapnik [81]. 

SVM constructs their predictions by creating hyperplanes to classify data using the 

available inputs.  When it comes to the methodology of solving a problem, SVM 

operates completely differently than ANNs, SVMs use linear constraints to solve a 

quadratic programming problem, unlike ANN which works by minimizing the loss 

without any constraints. SVMs only being able to deal with classification problems, 

led to the novelty of ε-SVR which deals with non-linear regression problems. The ε-

SVR has one main principle; that is to obtain an ε- insensitive loss function. The goal 

of the algorithm is to reach a regressive function that has a distance less than a 
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predefined ε value from actual values, which results in a tube with an ε radius around 

the regression line formed. A graphical representation of an ε-SVR can be shown 

below in figure 5.13 [82] 

 

 

Figure 5.13. ε-SVR example 

 

Generally, for any given problem, there are a set of independent variables (inputs) 

𝑥1, 𝑥2, 𝑥3, … … , 𝑥𝑛  and their corresponding dependant variables of interest 

𝑦1 , 𝑦2 , 𝑦3, … … , 𝑦𝑛 . Their correlation varies from one situation to the other, The non-

linear solving ability of ε-SVR lies in its ability to map each input into a higher di-

mension  F  where a linear relation with the target value exists [57], this is achieved 

by utilizing non-linear mapping functions as shown in Eq. 5.14 below. In this higher 

dimension, since a linear relationship is reached, a linear regression function is then 

fitted to the inputs as seen in Eq. 5.15. 
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 𝜙(𝒙𝒊): ℝ𝑛 → ℝ𝐹      

𝒙𝒊 ∈ ℝ𝑛 → 𝜙(𝒙𝒊) = [ 𝜙(𝑥𝑖1)𝜙(𝑥𝑖2) … … … . . 𝜙(𝑥𝑖𝑛)]𝑇 ∈ ℝ𝐹      

 (Eq. 5.14) 

 

𝑓(𝒙𝒊) = 𝔀𝑻. 𝜙(𝒙𝒊) + 𝑏      (Eq. 5.15) 

 

In the equations above, 𝜙(𝒙𝒊) represents the mapping function employed on the in-

puts, ℝ𝑛 represents the original dimension where the input exists whereas ℝ𝐹 is the 

new dimension to which the input has been transformed. 𝔀 is the weight vector and b 

is a predefined threshold value. The purpose of the model is to try to minimize 𝔀 

while the output of the function 𝑓(𝒙𝒊) has a maximum error of ε. Having such char-

acteristics, the problem then transforms into the following convex optimization prob-

lem [57]. 

min
𝔀

      
1

2
ǁ𝔀ǁ2 

       

s. to                           𝑦𝑖 − 𝑓(𝒙𝒊) ≤ 𝜀,    ∀𝑖= 1, … . , 𝑛       

𝑓(𝒙𝒊) − 𝑦𝑖 ≥ 𝜀,  ∀𝑖= 1, … . , 𝑛     (Eq. 5.16) 

 

The above equation is deemed valid, only in the case that the deviation resulting from 

the function 𝑓 is less than ε. However, some infeasible constraints may alter the re-

sults of the above equation, to account for such mischief, a concept known as the soft 

margin idea, was introduced and added to Equation 5.16 by Vapnik [81]. Slack Var-

iables 𝜉 and 𝜉∗ were assigned for points that are outside the ε tube as indicated 

in figure 5.13. As a result, a new form of equation 5.16 was created that controls the 

tradeoff between the minimization of 𝔀 and acceptable tolerance for errors. Eq. 5.17 
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is the new version. “C” is an introduced constant known as the cost of error coeffi-

cient. 

 

min
𝔀

      
1

2
ǁ𝔀ǁ2 + 𝐶 ∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗)       

 

  𝑦𝑖 − 𝑓(𝒙𝒊) ≤ 𝜀,    ∀𝑖= 1, … . , 𝑛       

𝑓(𝒙𝒊) − 𝑦𝑖 ≥ 𝜀,  ∀𝑖= 1, … . , 𝑛       

𝜉𝑖, 𝜉𝑖
∗ ≥ 0,  ∀𝑖= 1, … . , 𝑛       (Eq. 5.17) 

 

To solve this complex optimization problem in an easier approach, the following 

lagrangian function is applied. 

 

𝐿: =
1

2
ǁ𝔀ǁ2 + 𝐶 ∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗) − ∑ (𝑛

𝑖=1 𝜂𝑖𝜉𝑖 + 𝜂𝑖
∗𝜉𝑖

∗)  

= ∑ 𝛼𝑖(𝜀 +𝑛
𝑖=1 𝜉𝑖 + 𝑓(𝒙𝒊) − 𝑦𝑖)      

= ∑ 𝛼𝑖
∗(𝜀 +𝑛

𝑖=1 𝜉𝑖
∗ + 𝑦𝑖 − 𝑓(𝒙𝒊))      (Eq. 5.18) 

 

Where 𝜂𝑖, 𝜂𝑖
∗, 𝛼𝑖 , 𝛼𝑖

∗ are Langrangian multipliers and they abide by the fol-

lowing constraint. 

𝜂𝑖, 𝜂𝑖
∗, 𝛼𝑖, 𝛼𝑖

∗ ≥ 0       (Eq. 5.19) 
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Saddle point optimality conditions are illustrated below starting from Eq. 5.20 till  

Eq.5.23. These are basically derivatives of the Langrangian function in Eq.5.18 with 

respect to the main variables in the primal function (𝔀, 𝑏, 𝜉𝑖 , 𝜉𝑖
∗) [57] 

 

𝜕𝐿

𝑏
= ∑ (𝛼𝑖

∗ − 𝛼𝑖) = 0𝑛
𝑖=1        (Eq. 5.20) 

 

𝜕𝐿

𝔀
= 𝔀 − ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝒙𝒊 = 0𝑛
𝑖=1      (Eq. 5.21) 

 

𝜕𝐿

𝜉𝑖

= 𝑐 − 𝛼𝑖 − 𝜂
𝑖

= 0       (Eq. 5.22) 

 

𝜕𝐿

𝜉𝑖
∗ = 𝑐 − 𝛼𝑖

∗ − 𝜂
𝑖
∗ = 0       (Eq. 5.23) 

 

The dual problem is constructed using the four equations above which then 

replaces the 𝜙(𝒙𝒊, 𝒙𝒋) with 𝐾(𝒙𝒊, 𝒙𝒋), where “K” is known as a kernel function 

which will be explained later on in this section. The dual problem is represented be-

low[57]: 

max
−1

2
 ∑ (𝛼𝑖 −𝑛

𝑖,𝑗=1 𝛼𝑖
∗)(𝛼𝑗−𝛼𝑗

∗)𝐾(𝒙𝒊, 𝒙𝒋) − 𝜀 ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 +

∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑛

𝑖=1   

s.to  ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 = 0 

𝛼𝑖 , 𝛼𝑖
∗ ≥ 0,  ∀𝑖= 1, … . , 𝑛   

𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶 ,  ∀𝑖= 1, … . , 𝑛       (Eq. 5.24) 
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By following the constraint that for a Lagrangian multiplier, 𝛼𝑖
∗ , it has to satisfy the 

relation 𝛼𝑖
∗𝛼𝑖 = 0, in addition to that, both of these variables can’t be assigned 

values at the same time, the weight 𝔀 can be expressed as : 

𝔀 = ∑ (𝛼𝑗 − 𝛼𝑗
∗)𝑛

𝑗=1 𝜙(𝒙𝒋)      (Eq. 5.25) 

 

This then leads to the last form of the regression function shown below [57]: 

 

𝑓(𝒙𝒊) = 𝔀𝑻. 𝜙(𝒙𝒊) + 𝑏 = ∑(𝛼𝑗 − 𝛼𝑗
∗)

𝑛

𝑗=1

𝜙(𝒙𝒋) 𝜙(𝒙𝒊) + 𝑏

= ∑(𝛼𝑗 − 𝛼𝑗
∗)

𝑛

𝑗=1

𝐾(𝒙𝒊, 𝒙𝒋) + 𝑏 

(Eq. 5.26) 

 

As for the Kernel function; a kernel is a dot product in the feature space F. The kernel 

functions serve one purpose that is to simplify the calculating operations of the map-

ping functions. Several well-known kernel functions are commonly used such as Ra-

dial Basis Function (RBF), Linear function, Homegenuous Polynomial function, and 

Sigmoid function. 

For achieving the best results, the cost of error coefficient C, the width of the ε tube, 

and the type of kernel function that will be applied in the model are the most vital 

hyperparameters that determine the performance of the ε-SVR model.   

 

Discussed next, is the last model (ANN) that will be explored in an effort of creating 

an efficient hybrid model. 
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5.4 Artificial Neural Network  

Most of this subsection’s info is retrieved from [85] 

 

Artificial Neural Networks (ANNs) are one of the most famous types of NNs, they 

are inspired by the structure of a human’s central nervous system. ANNs are power-

ful mathematical and computational modules that have the ability to capture non-

linear or implicit relationships between a variety of inputs and target values. ANNs 

work by performing non-linear mapping of inputs and starts learning their behaviors 

during a defined training process. 

Like many other statistical-based learning models, ANNs use training and testing 

sets. The common order of operations is as follows; first, the input parameters are 

fed into the model and fitted using the training data set, afterward, the resultant fitted 

model is then applied to the testing data followed by obtaining the relevant results, 

finally, accuracy checks are carried out to evaluate the model’s performance. 

In the training phase, the general functions and hyperparameters of the ANN are 

adjusted according to the results of the testing data set to increase the model’s per-

formance, however, continuous altering of variables to ensure maximum accuracy 

may lead to two main obstacles, one which is that; the hyperparameters chosen are 

only fitting for this specific testing data and if a new testing data is checked, the 

model’s accuracy would drop, also, overfitting is a common consequence of too 

much manipulation of hyperparameters, this is why for any statistical learning 

model, a validation set is utilized. A validation set is a set of data points that the 

model is fitted to and then the fitted model is applied to the testing dataset to over-

come the previously mentioned problems. 

ANNs consist of interconnected artificial neurons (nodes) as a base layer (input 

layer), these nodes get inputs as 𝑥𝑖’s and  processes them by applying random weight 

coefficients 𝑤𝑖’s and a constant bias 𝜃, the assigned weight coefficients together with 
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the bias term enters an activation (transfer) function 𝑓 which results in an output 𝑦. 

The above explanation can be seen clearly in figure 5.14 below. There are multiple 

well-known activation functions such as Rectifier (relu), sigmoid, softplus,softsign, 

tanh, and many more. 

 

 

Figure 5.14. Simple ANN 

 

 

 

Since the ANN was initially introduced in 1943 [83], there were several versions of 

ANN that differed in terms of the number of neurons, activation functions, learning 

rates, and the general architecture of the model. One of the most used types of ANN 

which will also be applied in this thesis is the Multilayer Perception Network (MLP) 

[84]. MLP consists of one input layer, one output layer, and 𝑛 hidden layers. Figure 

5.15 shows an MLP with one hidden layer. 
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Figure 5.15. An MLP (feed-forward) network with one hidden layer 

 

The hidden layer can consist of any number of neurons depending on the choice of 

the designer, A module of a NN can be denoted as a feed-forward network when 

information is fed in only one direction without undergoing any cycles. In the case 

of the ANN that is illustrated in the figure above and the one used by the thesis, the 

ANN will be considered as a feed-forward network that has information flowing 

from the input layer to the hidden layer and consequently from the hidden layer to 

the output layer. 

5.4.1 Processing of Data in ANNs 

Each neuron in any of the layers is considered as a summation point for the inputs of 

that neuron. In a general sense, the inputs are fed into the input layer’s nodes and 

then they are transferred to the first hidden layer, in which the inputs that reached a 

node in the hidden layer (hidden node)  are multiplied by randomized weight coeffi-

cients and then added up together, moreover, the bias term is also added and the 
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resultant value is then transformed via an activation function, the final output of this 

operation is then passed on to the next hidden layer and the procedure continues until 

it reaches the output layer. For one node, the mathematical procedure of 𝑛 number 

of inputs is formulated below: 

 

𝑜𝑢𝑡𝑗 = 𝑓(∑ 𝑥𝑖  ×  𝔀𝑖𝑗 +  𝜃𝑗
𝑛
𝑖=1 )       (Eq. 5.27) 

 

This equation’s interpretation may vary depending on what it is describing, but the 

subscripts used are always referring to the following analogy; subscript 𝑗 refers to 

the neurons in the current layer of interest whereas 𝑖 indicates the neurons of the 

proceeding layer.𝑜𝑢𝑡𝑗  is the product from the current neuron, 𝑥𝑖 is the input being 

fed to the neuron, if the neuron is in the input layer then 𝑥𝑖 represents the model’s 

inputs, while in the case that a hidden layer is of interest then 𝑥𝑖 is the output of the 

previous node. 𝜃𝑗  is the bias term that is added in the current node, and 𝑓 is the 

transfer function applied. This procedure is carried out in all nodes in all of the layers 

in the ANN. 

To optimize the model’s performance, the designer has to find the optimum; number 

of neurons in each layer, number of hidden layers, and  type of activation function. 

5.4.2 ANN’s learning methods 

In order to obtain the desired output, after deciding the number of neurons in each 

layer, the number of hidden layers, and the activation function, the randomized 

weights for the ANN and bias terns are constantly being updated via learning. The 

learning stage is carried out in the form of epochs (iterations). One epoch is done 

when all the training datasets (input and output pairs) are fed into the model. In the 

learning stage, the weights and bias terms are updated after every epoch.  
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The learning stage can be categorized into two categories; supervised and unsuper-

vised, supervised is when a set of inputs and desired outputs are fed into the network 

so that the weights are adjusted to minimize the cost function (error). On the other 

hand, unsupervised learning is carried out by only feeding inputs to the network and 

the outputs are unknown, in that case, weights are being adjusted to cluster the inputs. 

Unsupervised learning is widely used for classification problems. In this thesis, su-

pervised learning will be used. 

Various supervised learning algorithms can be applied to train the ANN, one of the 

most prominent algorithms is backpropagation (backward propagation of errors). 

This concept behind backpropagation is to decrease the difference between the actual 

data and the output of the network by using a gradient descent algorithm which is 

formulated below. 

𝔀𝒏+𝟏 = 𝔀𝒏 − 𝜆𝑛∇𝑓(𝔀𝒏)        (Eq. 5.28) 

 

In Eq. 5.28, 𝜆𝑛 represents the learning rate, 𝔀𝒏 is the weight at the nth iteration or 

epoch and 𝑓 is the loss function. When the network starts operating, the inputs are 

assigned an initial weight of 𝔀𝟎 which will result in a correspondent gradient of the 

loss function. As iterations continue the weights are adjusted in the direction where 

𝑓 is decreasing. 

The loss function used in backpropagation is the sum of squared errors (SSE) and it 

is computed using the following equation. 

𝑓(𝔀) =
1

2
∑   𝑦𝑡 − �̂�𝑡𝑡∈𝑇           (Eq. 5.29) 

 

Where T indicated the training set, 𝔀 is one complete set of weights,  𝑦𝑡 is the actual 

data and �̂�𝑡 is the predicted data. 
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After obtaining the error function, the change of each weight ∆𝔀𝑖𝑗 is calculated by 

multiplying, the gradient of the error function with respect to 𝓌𝑖𝑗 (weight vector) 

with the negative magnitude of the learning rate 𝜆  as seen below in Eq.5.30. 

∆𝓌𝑖𝑗 = −𝜆
𝜕𝑓(𝔀)

𝓌𝑖𝑗
      (Eq. 5.30) 

 

𝓌𝑖𝑗 is the weight between nodes i and j. All of the previously assigned weights are 

adjusted with every epoch and newly updated weights are assigned. 

For this type of prediction model, It is important to identify when should the epochs 

stop. With every iteration, the cost function is decreasing and the weights are being 

updated, which consequently leads to the improvement of the model’s performance, 

however, this trend of improvement stops at a certain point and overfitting occurs, 

so it is important to know when to stop the epochs. There are various criteria for 

stopping the epochs, one of which is the “Minimum validation Error” and this is 

basically telling the ANN to stop iterations when the first minimum is reached and 

another criterion is “Maximum number of Validation Failure” and this method fol-

lows a different approach that is to stop epochs after an n number of iterations where 

no decrease of the loss function is observed. 

As the size of datasets increases or the number of neurons increases, or the number 

of hidden layers increases, the computational complexity will also increase leading 

to an increase in total time to get results, that is why these models have a predefined 

maximum number of epochs or maximum amount of waiting time where the model 

executes the operation if exceeded. 

All of the parametric and non-parametric models that will be used have been dis-

cussed and this chapter is concluded. The following chapter will discuss how was 

the dataset available handled and how were the models applied while illustrating the 

results of each model. Important conclusions and remarks will also be demonstrated. 
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CHAPTER 6  

6. EMPIRICAL RESULTS 

In this chapter, all the empirical results will be discussed from data processing to 

each model being implemented and their corresponding results, also the resultant 

hybrid model will be explained and its results will be presented. Finally, important 

remarks about the methodology and future work will be mentioned. The software 

used for all the upcoming demonstrations is python version 3.9.  

Before the discussion, a flowchart describing the flow of the work will be presented 

below to familiarize the reader with the upcoming operations 

 

Figure 6.1. Methodology Flow chart 



 

 

 

 

82 

 

6.1 Accuracy Metrics 

Usually, the accuracy of any operation can be calculated by dividing the difference 

between the output and input of the operation by the input and then multiplying it by 

100, however, this is only valid for discrete, singular values. In regression problems 

such as the one presented in this thesis, the inputs and outputs are continuous, there-

fore different metrics are used to grade the models’ performances. There are numer-

ous accuracy metrics available in the literature, this thesis will use Mean Absolute 

Percentage Error (MAPE) and Mean Absolute Error (MAE). 

6.1.1 Mean Absolute Percentage Error 

This accuracy metric measures how accurate the forecast of the model is in terms of 

a percentage. The general scale of this metric is; the smaller the better.  MAPE is 

formulated below [86] : 

 

𝑀 =
1

𝑛
∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1 ∗ 100       (Eq. 6.1) 

Where n is the number of fitted points, 𝐴𝑡 is the actual value, and  𝐹𝑡 is the forecasted 

value. The general scale is the smaller the better, 0 meaning accuracy of 100 percent 

whereas 100 means accuracy of 0 percent. 

6.1.2 Mean Absolute Error 

MAE is more or less a measure of errors between paired observations, it can be for-

mulated using Eq.6.2  below: 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
         (Eq. 6.2) 
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Where 𝑦𝑖 is the predicted value, 𝑥𝑖 is the true value and n is the total number of data 

points. The general scale is the same as MAPE, where the smaller the MAE the better 

[87]. 

6.2 The competition 

Before trying to apply the models proposed, it is important to know what is the thesis 

trying to beat, so this thesis is going against ENSTO-E predictions that were obtained 

using temperature regression and load projection model that incorporates uncertainty 

analysis under various climate conditions. This model’s predictions will be assessed 

according to the previously mentioned metrics starting from the date 15th  of August 

2018 till the end of the year 2018. 

After applying the accuracy metrics it was found that ENSTO-E was able to forecast 

the demand with a MAPE of  0. 878 and MAE of  255.27. which means that 

according to MAPE the forecast has an accuracy of 99.122 percent and in the case 

of MAE, it means that there is an average of 255.27 MWh error for every prediction. 

The Accuracy may seem to be too good to be true, however, this is the accuracy of 

the last quarter of the year 2018. Since the beginning of this thesis, the importance 

of accurate electricity demand predictions has been emphasized and the sensitivity 

of error is very high, so it is expected to have such a percentage when dealing with 

data that was used to predict an important and advanced country such as  Spain. 

The goal of the thesis is to come up with a hybrid model that will outperform these 

results by applying different techniques that weren’t used together before. Also, if 

the goal wasn’t achieved and the proposed model failed to get the desired results, the 

thesis’s results will guide future work into not taking the same path and if other 

researchers were to take the same path, they would have guidance on what to do and 

what to avoid, which will in return save time and create more room for optimization 

in the available literature. 
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After deciding on the accuracy metrics and identifying the accuracy that this thesis 

is trying to beat, the application starts to take place. The methodology is as follows, 

the available datasets will be processed before feeding them into the models, then 

each of the previously explained models will be applied and optimized. The results 

will then be obtained. Afterward, the best models in terms of performance will be 

combined and a hybrid model will be achieved. 

 

6.3 Data Pre-Processing 

As mentioned earlier in chapter 4, two data sets were obtained from reliable sources, 

one that is illustrated in figure 4.1  and the other in figure 4.3. Since this thesis is 

only focused on forecasting the electricity demand, in the dataset presented in figure 

4.1, the columns containing the price information were dropped. 

 

As for the other data set that includes the weather variables, this thesis will focus on 

the quantitative data only that is constantly changing with time, as a result, the 

columns including Rain in the last hour, Rain in the last three hours, Snow in the last 

three hours, Clouds, and Weather id were dropped. 

 

Later on, the values in the datasets were set to appropriate types to ensure that none 

of the values lose their significant figure order while undergoing computations. For 

future reference, the dataset that is including the electricity demand will be referred 

to as df2 and the other dataset including the weather conditions will be mentioned as 

df1. The datasets information are tabulated below in table 6.1 and 6.2 respectively.  

 

 



 

 

 

85 

 

Table 6.1.  df2 datatypes 

Column Name Data Type 

Time Datetime64 [ns,UTC] 

Total load actual Float64 

Total load Forecast Float64 

 

Table 6.2. df1 datatypes 

Column Name Data type 

City name object 

Temp Float64 

Temp_min Float64 

Temp_max Float64 

Pressure Float64 

Humidity Float64 

Wind_speed Float64 

Wind_deg Float64 

 

After assigning the appropriate datatype for each variable, the dataset was checked 

for any missing data, and it was found that there are a total of 36 missing data points 

in df2 in the “Total actual load”  column which accounted for 0.112 percent out of 

all the data points available. The number of missing data points in every month was 

plotted against time and is presented below in figure 6.1. 
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Figure 6.2. Number of missing data points in every month 

 

 

 

Another illustration of the numbers presented in the figure above is shown below in 

table 6.3. 
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Table 6.3. Number of missing data points per month 

Year-Month Number of missing data points 

2015-01 7 

2015-02 11 

2015-04 4 

2015-05 2 

2015-10 2 

2015-12 1 

2016-04 2 

2016-05 1 

2016-07 1 

2016-09 1 

2017-11 2 

2018-06 1 

2018-07 1 

 

As the figure and table above illustrated, it can be seen in the timeline of the event, 

the frequency of NaN values is scattered around while the data are being recorded. 

There are several clusters early on, such as the ones around January 2015 and Feb-

ruary 2015 whereas fewer records of missing values are recorded recently. It is pos-

sible that the instruments were being set up to measure those energy generation data 

early on, and as time progressed, a more healthy infrastructure was in place to collect 

necessary data.  

Any machine learning algorithm will experience a decrease in its performance if 

there are missing data points that are included in the dataset, and to overcome such 

an obstacle, interpolation was used to reasonably assign values to the missing data 

points. Two different methods were used for interpolation, their usage depended 

mainly on the span of the NAN values, If there were multiple NaN values in the close 

span, quadratic interpolation with the order of four was used to account for the 



 

 

 

 

88 

 

movement of the curve when calculating the standard deviation, mean, etc.., and in 

the case of a singular NaN value in the close span, a  CubicSpline method was used 

to interpolate that specific NaN value [88]. 

At this point, the datasets are clear of any missing values and are in the correct for-

mat, before further processing, the two datasets are to be connected to have one 

whole uniform dataset that includes the inputs and the outputs. Since the two datasets 

have one column in common, that is; the time, which is in the same format (hourly 

basis from 2015 till 2018), the two datasets were combined using the method pro-

posed by Dimitrios Roussi [89]. It is important to remind the reader that df1 had 

weather variables for 5 of the largest cities which as a result, when combining both 

datasets,  for every weather variable, 5 columns were added each representing a dif-

ferent city.  

To have a better understanding of the variation of each weather variable in each city, 

histograms, and distribution plots were plotted, all of them are available in Appendix 

A. Also, box plots were drawn for every variable, and outliers’ existence was 

checked and removed to prevent any errors in future calculations. One of the multiple 

box plots that are also available in Appendix A is given below.  

 

Figure 6.3. Humidity Box Plots for every city before removing outliers. 



 

 

 

89 

 

The black circles presented in the figure above represent outliers, and after removing 

these outliers as mentioned before, the new humidity box plot is shown below. 

 

Figure 6.4. Humidity Box Plots for every city after removing outliers. 

 

Box plots were plotted for all variables and were checked and then adjustments 

for outliers’ removal were applied accordingly. One of the main variables in 

df1 is “wind degree” it was realized that the wind degrees are recorded in a 

cartesian coordinate system (0 to 360 degrees), since this is the case, angles 

such as 360 and 0 degrees for example are wind speeds pointing in the same 

direction but may have different interpretations by the machine learning algo-

rithms, therefore, the wind degree column was omitted and instead wind com-

ponents in the x and y direction were added as 2 new columns to prevent such 

possible misinterpretations using the equations below. 

 

𝑤𝑥 = 𝑤𝑖𝑛𝑑_𝑠𝑝𝑒𝑒𝑑 cos(𝑤𝑖𝑛𝑑_𝑑𝑒𝑔𝑟𝑒𝑒)      

𝑤𝑦 = 𝑤𝑖𝑛𝑑_𝑠𝑝𝑒𝑒𝑑 sin(𝑤𝑖𝑛𝑑_𝑑𝑒𝑔𝑟𝑒𝑒)     (Eq. 6.3) 
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Where 𝑤𝑥 is the x-component of wind speed and 𝑤𝑦 is the wind speed in the 

y-direction. The resultant combined dataset includes a total of 42 columns 

which are tabulated below. 

 

Table 6.4. Variables included in the combined Dataset 

Column 

Number 

Column Datatype 

1 Time Datetime[ns,UTC] 

2 Total load actual Float64 

3 Temp_Barcelona Float64 

4 Temp_min_Barcelona Float64 

5 Temp_max_Barcelona Float64 

6 Pressure_Barcelona Float64 

7 Humidity Barcelona Float64 

8 Wind_Speed_Barcelona Float64 

9 Wx_Barcelona Float64 

10 Wy_Barcelona Float64 

[11-18] . Weather_variables_Bilbao 

[19-26] . Weather_variables_Valencia 

[27-34] . Weather_variables_Seville 

35 Temp_Madrid Float64 

36 Temp_min_ Madrid Float64 

37 Temp_max_ Madrid Float64 

38 Pressure_ Madrid Float64 

39 Humidity Madrid Float64 

40 Wind_Speed_ Madrid Float64 

41 Wx_ Madrid Float64 

42 Wy_ Madrid Float64 
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The current problem that this thesis is dealing with is considered to be a time-

series forecasting problem and one of the main characteristics of the target 

value that needs to be known is its trend, however, the trend is not easily rec-

ognized in complicated variations.  

As can be seen below in figure 6.4, it is difficult to identify what is the actual 

trend of the total actual load due to its shape. 

 

Figure 6.5.Total actual load variation 

 

In figure 6.4, the total actual load is plotted on the y-axis and the number of data 

points is plotted on the x-axis. In the figure above to demonstrate the data in a clearer 

version, the data points were grouped to have a better scale of demonstration. 

 As it can be seen, no clear trend can be concluded from the figure, however, if this 

trend is decomposed into seasonal and residual, a resultant trend can be easily seen 

as illustrated below in figure 6.5. 
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 As mentioned earlier in chapter 3,  under the Trend Variation section, multiplicative 

seasonality proved to be superior to additive seasonality and as a result,  it was used 

to decompose the trend in figure 6.4 for optimum results. 

 

Figure 6.6. Decomposition of multiplicative time series  

 

Resid is more or less,  noises (unwanted spikes). Seasonality and residuals are un-

wanted information in any trend variation,  decomposing them will facilitate the 

finding of a clearer relationship between input (weather) and output variables. 

Other than the removal of seasonality, checking for the randomness of the dataset is 

a vital and critical step to ensure the possibility of machine learning models’ appli-

cation. Randomness is an unwanted trait in any dataset in an AI application because 

if the dataset was random, the possibility of reaching useful conclusions would be 

impossible,  since no relationships or underlying connections can be made. Random 



 

 

 

93 

 

datasets prevent the machine learning algorithms from achieving their optimal per-

formance for mapping the data because relationships can’t be established.  

To check for randomness, correlograms are one of the most popular methods used. 

A correlogram depicts the auto-correlation between data pairs at various time inter-

vals. Correlograms are tools for determining randomness in a dataset by computing 

auto-correlations and partial auto-correlations for data values at various time lags. 

Correlograms are simply computing the relation between two variables and if the 

results were zero, that means that there is no direct relation between them and if the 

results of their computations were non-zero, the opposite would be true.[90] 

A correlogram was applied on the total load actual(dependant variable) only,  to 

check if its variation is random or there is an underlying relationship that the applied 

models can achieve. Since the correlogram was applied on one variable only, the 

relationships created by the correlogram is between every data point and its lag, in 

other words; 𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑎𝑑𝑡  and  𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑎𝑑𝑡−1 

If the time lag separation is random, both correlation graphs are near zero, but if it is 

not, one or more of the auto-correlations will be non-zero. Autocorrelation and par-

tial autocorrelation graphs are plotted below for the combined dataset. 

 

Figure 6.7. Autocorrelation and partial autocorrelation graphs. 
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In figure 6.6, the time lags are presented on the x-axis and their correlation magni-

tudes are on the y-axis, the blue region accounts for values that can be considered as 

0. It can be seen in the figure above that there are lag values which are larger than 0 

indicating a non-random behavior in both; autocorrelation (left) and partial autocor-

relation (right). 

Before concluding the data preprocessing, one final check is to be made which is 

checking if the dataset is stationary. “Stationary” is a term that is usually used with 

time series data like the one present in this thesis. Time-series data can be considered 

stationary if its statistical properties do not change with time [91]. Stationarity is vital 

in ML and AI applications because these applications are constantly using statistical 

tools and tests that rely mainly on the statistical properties of the data.  

To check for stationary, Several tests are conducted in the literature, one of the fa-

mous methods is the  Augmented Dickey-Fuller (ADF) test. This test operates on 

what is known as a “null hypothesis” which is the assumption that the time series 

contains a unit root and is non-stationary. Resulting in the following criterion; if the 

P-value in ADF is less than the significance level of (0.05) and the ADF test statistics 

value is smaller than the critical values at different percentages, the time series can 

be considered as stationary [91]. In python, there are specific functions that can cal-

culate the ADF statistic which was applied, and the following results were obtained.  

 

Figure 6.8. ADF test results 
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The P-value is smaller than the predefined significance level and the ADF statistic is 

smaller than several critical values, concluding that the dataset presented is station-

ary.  

The data-preprocessing stage has been concluded at this point and the models' appli-

cation will be initiated. After discussing in the previous chapter, the different models 

that will be utilized, and the complexity of the governing equations used, when it is 

time for application, the current technology facilitated the process with the aid of 

different softwares. Therefore, simple and precise steps were conducted to achieve 

reliable results using Python. 

6.4  ARIMA MODEL 

There exist different ways of implementing an ARIMA model on a dataset, the clas-

sical way of doing this is following the Box-Jenkins Methodology [72]. The imple-

mentation procedure is as follows: 

6.4.1 Model Identification:  

This stage involves the usage of plots and statistical summaries to differentiate 

different trends, seasonality, and autoregression elements to reach a conclusion 

on the amount of differencing and size of the lags that are required.  

This stage was completed in the data-preprocessing phase. According to the the-

ory explained in chapter 5 and the results reached in the previous section, the 

dataset is stationary (no seasonality) and no differencing is needed which means 

that the ARIMA (p,d,q) model will be used with a “d” term equal to 0. Moreo-

ver, the dataset had to be normalized by changing the data to fit within a common 

scale, without distorting differences in the ranges of values or losing information. 
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6.4.2 Parameter Estimation: 

In this phase, the model is fitted to the dataset and the other parameters which 

resemble the Autoregression and Moving Average, are to be found. In py-

thon, there are libraries and built-in functions that calculate the optimum p 

and q values for the specific data set that is used. The functions obtained p 

and q values of  3 and 2 respectively. Consequently, ARIMA (3,0,2) model 

will be implemented. 

6.4.3 Model Checking 

After choosing the parameters for ARIMA, the model is then constantly receiving 

adjustments to reach the optimum level of fit for the in-sample or out-sample of the 

model (training and testing candidates).  

Again this procedure could be achieved using built-in features in python while ob-

taining the results. The fitting summary can be shown below. 

 

Table 6.5. Summary of Convergence of the ARIMA model 

N Tit Tnf F 

6 42 45 8.2965 

 

Where  N   accounts for the number of steps ahead for which prediction is required, 

Tit is the number of iterations, Tnf is the total number of function evaluations and F 

is the final function value with which the model is fitted on the data. The dataset was 

divided into a training phase that starts from the beginning of the dataset till the 14th 

of August 2018 at 23:00 and a testing phase that begins with the 15th of August 2015 

at 00:00 till the end of 2018. 
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As mentioned earlier, the ARIMA model doesn’t involve any inputs but rather fo-

cuses on prediction using lags of the value of interest. As a result, only the total load 

actual will be fed into the model and forecasted values will be generated. 

6.4.4 Results 

After the model was successfully fitted, graphs demonstrating the results were plot-

ted, as seen below in the figure. 

 

 

Figure 6.9. ARIMA Forecasted  load 

 

In the figure above the forecasted demand is colored orange. On the y-axis, the values 

of the demand in MW are listed, and on the x-axis, the number of data points present 

in the dataset which is around 36000 is plotted. When the forecasted load is added to 

the actual load in one graph, the following demonstration is obtained in figure 6.9. 

Where the blue-colored trend represents the actual load as indicated in the legend. It 
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can be seen that the orange line starts from a specific region which is the forecasted 

time domain that starts from the 15th of August 2018 till the end of 2018. 

 

Figure 6.10. Actual vs. ARIMA forecasted Load 

 

Figure 6.11. Total vs. Actual load for the forecasted region 
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Unfortunately, the ARIMA model performed poorly to the extent that the predictions 

were just the average of the total actual load.  

After applying the accuracy metrics priorly mentioned, the ARIMA model achieved 

a MAPE of  14.12  and an MAE of  3938.59. which means that according to MAPE 

the forecast has an accuracy of  85.88 percent and in the case of MAE, it means that 

there is an average of  3938.59 MWh error for every prediction. 

6.5 LSTM 

The second model that is applied to the dataset is the long short-term memory, unlike 

ARIMA, LSTM is more complicated and it contains several “hyperparameters”, hy-

perparameters are specific variables in the model’s algorithm that need to be adjusted 

to fit the dataset in order to achieve optimum results. In other words, the tuning of 

these parameters would help the model to best fit the dataset. The model contains the 

following hyperparameters: 

• Lookback:  

This term represents the number of data points that will be taken into consid-

eration while predicting one value. 

• The number of modules: 

As explained earlier, LSTM consists of n number of modules, so identifying 

the optimum number of modules for the best results and simultaneously, hav-

ing considerable computational complexity with a suitable run-time is the 

goal of this choice. 

• Batch size: 

The number of data points that are fed to the system at a time 

• Epochs: 

Number of iterations that the whole data will be fed into the total number of 

modules to give out predictions. 

 



 

 

 

 

100 

 

• Optimizer type:  

These are functions that are used to fit the parameters to the model, there is a 

total of 7 functions known as: “Adam”, “Rmsprop”, “Adadelta”, “Adag-

rad”, “Adamax”, “Nadam”, and “Ftrl”. 

 

The importance of these variables depends on their contribution to the prediction, so 

their adjustments will be done one at a time according to their vitality. The hyperpa-

rameters’ tuning will be done manually.  

To prevent any overfitting and to make sure that the model would work similarly on 

any new data i.e. the hyperparameters would be tuned perfectly for that specific test-

ing data, the dataset will be divided into a training dataset that acquires 70 percent 

of the whole data, validation dataset of 19 percent, and testing of 11 percent. These 

portions were chosen according to the testing data’s initial date which is the 15th of 

August which represents the last 11 percent of the data.  

A validation dataset was added to the LSTM and not ARIMA, due to the fact that no 

tuning was done manually and the hyperparameters weren’t adjusted specifically to 

the dataset. The LSTM model that will be used is a univariate LSTM with total load 

actual as its variable. In other words, LSTM will be doing the exact same thing as 

ARIMA but using a different algorithm. In addition, the data set has to be normalized 

before any tuning. 

The number of modules was deemed to be the most crucial out of all the hyperpa-

rameters so its tuning was done first. The other parameters were set to the following 

values. 

• Look back: 1 

• Batch size: 10 

• Epochs:10 

• Optimizer: “Adam” 
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The epochs were chosen to be a small value to decrease the computational time and 

according to the previous chapter and the literature, as the number of epochs in-

creases, the learning of the algorithm will also get better to a certain extent. To grade 

the values inserted for the hyperparameters, MAPE will be chosen as the criteria of 

acceptance. The initial values are chosen randomly. Optimizer type and epochs will 

be the last hyperparameters that will be adjusted because they depend on the other 

parameters. 

 

Table 6.6. Hyperparameter tuning (Number of Modules) 

Trial Number of Modules MAPE 

1 100 3.3824 

2 200 3.3912 

3 150 3.4043 

4 120 3.4068 

5 50 3.3906 

6 70 3.4373 

7 80 3.3554 

8 60 3.3916 

9 20 3.4094 

10 10 3.5304 

 

Initially, 100 modules were chosen then the model’s MAPE was taken as a reference, 

larger modules were then assigned and their MAPEs were worse than the reference, 

so the search shifted direction towards smaller values. It can be seen at this stage of 

optimization from the table that the optimum number of modules is 80. Moving on 

to the next hyperparameter; Look Back. 
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Table 6.7. Hyperparameter tuning (Look Back) with number of modules as 80 

Trial Look Back MAPE 

1 1000 11.294 

2 500 6.4605 

3 100 4.424 

4 80 3.1848 

5 60 2.6605 

6 40 2.4407 

7 20 2.3264 

8 10 2.2757 

9 5 2.4319 

10 6 2.4235 

11 8 2.4524 

12 11 2.2236 

13 15 2.2783 

 

Since there are around 36000 data points, it was seen that it is possible to use 1000 

historical data points for the prediction of one, so the initial value was taken as 1000 

and a descending value order was taken since the MAPE was continuously getting 

better. According to the table above, the optimum number of lookbacks is 11. Next, 

is the batch size. 

Since predictions are hourly based, and there are 4 years worth of data, the batch size 

estimation was initiated having multiples of  24 which is the number of data points 

per day. The initial batch size was chosen as the maximum value which is 32850. 

This value is equivalent to the number of data points present until the 15th of August 

2018. 
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Table 6.8. Hyperparameter tuning (Batch size) with number of modules as 80 

and look back as 11 

Trial Batchsize MAPE 

1 32850 11.9403 

2 26280 13.8612 

3 17520 11.9003 

4 8760 13.1479 

5 4380 9.7234 

6 2190 8.1350 

7 720 3.5703 

8 360 3.1538 

9 168 2.6184 

10 72 2.4000 

11 24 2.4307 

12 12 2.2611 

13 6 2.4107 

14 10 2.2477 

15 8 2.2165 

 

 

 

According to the table above, the optimum batch size is 8, moving forward, the type 

of optimizing function will be decided. 
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Table 6.9. Hyperparameter tuning (Optimizer) with number of modules as 80, 

look back as 11, and batch size 8 

Trial Optimizer Mape 

1 Adam 2.2165 

2 Rmsprop 2.5162 

3 Adadelta 11.7162 

4 Adagrad 6.8793 

5 Adamax 2.3079 

6 Nadam 2.2246 

7 Ftrl 10.2459 

 

According to table 6.9 above, the best optimizer for the current hyperparameter val-

ues seems to be “Adam”. So far the hyperparameter tuning was done manually and 

at this point, A rough estimate for the range of each parameter is known. In python 

software, a loop was created to try each possible combination of the top parameters 

that are listed in bold or italic or underlined in the tables above. A total of 120 dif-

ferent combinations was checked to ensure that the manual combination found is 

actually the optimum combination. A sample of the highest results is attached in 

Table 1 in Appendix B. 

The final result that was obtained was as follows. 

• Number of Modules:100 

• Look back:11 

• Batch size:10 

• Optimizer: “Adam”. 

 

This combination is different from the manually chosen one indicating that there is 

a possibility that there are different combinations out there that would yield better 

results. Nevertheless, trying all the possible combinations is not feasible, 
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consequently, no more trials will be conducted. This optimum combination resulted 

in a MAPE of: 2.200 which is equivalent to 97.8 percent accuracy.  

So far all of these hyperparameter tunings were done on the validation set.  Now, 

these final parameters will be applied to the testing data set and a final prediction 

will be obtained. The number of epochs will be adjusted in an ascending manner 

until “the test loss” stays constant or starts increasing to prevent overfitting as men-

tioned prior. 

A model’s loss is a number indicating the errors in the prediction. As the number of 

iterations increases the training loss together with the testing loss is expected to de-

crease respectively, yet till a certain point. The testing loss may stop varying and 

remain constant and sometimes, the loss starts increasing again. 

A graph demonstrating the training and testing loss was plotted against the number 

of epochs used and the figure below was obtained. 

 

Figure 6.12. Model Loss 
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A total of 3000 epochs was conducted and the training and testing loss started to 

show constant variation, indicating that increasing the number of iterations more than 

that would not change the final accuracy much and will be more time-consuming.  

Even though it can also be argued that stopping at 1500 iteration could be sufficient, 

since the targeted problem is of high vitality, more iterations were conducted to have 

higher confidence in the obtained results. 

The predicted load vs the actual load were then plotted on the same graph to see the 

difference in value as illustrated below in figure 6.12. 

 

 

Figure 6.13. Actual vs. LSTM predicted load 

The legend above states that the red trend is the LSTM predicted load whereas the 

blue is the actual total load. Minimal differences were seen indicating that the accu-

racy of the model is high.  

Later on, the accuracy metrics were applied and the final results were obtained. The 

LSTM model acquired a MAPE of 1.7703 and an MAE of 504.756. which means 

that according to MAPE the forecast has an accuracy of  98.23 percent and in the 
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case of MAE, it means that there is an average of  504.756 MWh error for every 

prediction. 

6.6 ε-SVR 

This model will start incorporating the weather variables as inputs meaning that ε-

SVR will be used as a multivariate model. The same methodology is applied as the 

LSTM, the data set was first normalized and then divided into three main bulks train-

ing, validation, and testing portions with the same percentages for consistencies and 

ease of comparison.  

In the case of  ε-SVR, the main hyperparameters that need tuning are: 

• The number of inputs 

• Type of Kernel 

• Cost Function 

• ε 

These variables were explained earlier in the previous chapter so no further explana-

tion is needed. As specified earlier, there are a total of 40 different variables that 

represent each weather input for the five major cities and one extra variable that is 

time. The literature suggested that regardless of the problem that is aimed to be 

solved, the less the number of variables that can be fed to an ε-SVR model the better, 

given that no important information is lost. [92] 

In an attempt to filter the number of inputs, a correlation matrix was drawn to check 

for any of the variables that have high collinearity. A correlation matrix operates by 

connecting all variables using a linear relationship. These proportionality constants 

are in the range of  0 to 1. Zero meaning; not correlated and one indicates that the 

variables are the same. The correlation matrix between the variables are is shown 

below in figure 6.13 

.
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Figure 6.14. Correlation Matrix 
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Figure 6.13 is a correlation matrix between all 40 weather variables. If a closer ob-

servation is taken, it can be found that temp_min and temp_max are highly correlated 

with each other and also with the actual temp for each city, to prevent any multi-

collinearity conundrum, the temp_min, and temp_max columns were dropped.  

The number of input variables decreased from 40 to 30. In an attempt to decrease the 

number of weather inputs further, the possibility of adding weighted coefficients was 

explored. These weighted coefficient values were chosen in accordance with the pre-

viously stated assumption that the 5 major cities in terms of the population can pro-

vide acceptable accurate results. Having said this, weighted coefficients were as-

signed values with respect to the cities’ population in the specific years, resulting in 

one combined column for all 5 cities for a specific weather input [93]. For example, 

the combined temperature for 2015 will be as follows:  

 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑡𝑒𝑚𝑝_2015 = 𝑤_2015𝑏𝑎𝑟𝑐 ∗ 𝑇𝑏𝑎𝑟𝑐 + 𝑤_2015𝑏𝑖𝑙𝑏 ∗ 𝑇𝑏𝑖𝑙𝑏 +
𝑤_2015𝑚𝑎𝑑 ∗ 𝑇𝑚𝑎𝑑 + 𝑤_2015𝑠𝑒𝑣 ∗ 𝑇𝑠𝑒𝑣 + 𝑤_2015𝑣𝑎𝑙 ∗ 𝑇𝑣𝑎𝑙    

 (Eq. 6.4) 

Where; 

𝑤_2015𝑏𝑎𝑟𝑐 =
𝐵𝑎𝑟𝑐𝑒𝑙𝑜𝑛𝑎_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015
  

𝑤_2015𝑏𝑖𝑙𝑏 =
𝐵𝑖𝑙𝑏𝑎𝑜_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015
  

𝑤_2015𝑚𝑎𝑑 =
𝑀𝑎𝑑𝑟𝑖𝑑_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015
  

𝑤_2015𝑠𝑒𝑣 =
𝑆𝑒𝑣𝑖𝑙𝑙𝑒_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015
  

𝑤_2015𝑣𝑎𝑙 =
𝑉𝑎𝑙𝑒𝑛𝑐𝑖𝑎_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_2015
  (Eq. 6.5) 
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Proceeding to apply equations 6.4 and 6.5 to all the dataset, the combined dataset 

with the weighter parameters includes 6 major inputs (dependant variables), all of 

which are listed below in table 6.10. 

 

Table 6.10. Combined Dataset with weighted parameters 

Column Data type 

Time Float64 

Combined Temperature Float64 

Combined Humidity Float64 

Combined Pressure Float64 

Combined Wind Speed Float64 

Combined Wx Float64 

Combined Wy Float64 

Total Load Actual Float64 

 

Following the decrease of the number of inputs, the other main parameters are to be 

chosen there are a total of 3 different kernels namely; Radial Basis Function( RBF), 

Linear function, Homegenuous Polynomial function. Each of these kernels includes 

other main parameters such as C and ε which are common in all functions and a 

specific parameter for polynomial which is its degree. In other words; SVR is a func-

tion of ; 

 

𝑆𝑉𝑅(𝑘𝑒𝑟𝑛𝑎𝑙: (𝑅𝐵𝐹, 𝐿𝑖𝑛𝑒𝑎𝑟), 𝐶, 𝜀)      

𝑆𝑉𝑅(𝑘𝑒𝑟𝑛𝑎𝑙: 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙, 𝐷𝑒𝑔𝑟𝑒𝑒, 𝐶, 𝜀)   (Eq. 6.6) 
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The width of the 𝜀 -insensitive zone mentioned in the previous chapter, which is used 

to fit the training data, is controlled by 𝜀. The number of support vectors needed to 

generate the regression function is affected by this value The larger the 𝜀,  the fewer 

support vectors are generated. Larger 𝜀, on the other hand, results in more flat esti-

mations.  However, if the 𝜀 is too low, for example, 0, overfitting is expected. Choos-

ing a valid value for 𝜀 becomes the most vital step after choosing the type of kernel 

which will be used. 

In that sense a series of 𝜀 were chosen to be [0.01,0.05,0.1,0.4,0.6,0.8]. All the values 

were are to chosen to be less than 1 because while normalizing the data, the data 

points were set in the range of 0 to 1. As for C, which is the “Regularization” param-

eter. The strength of the regularization process is inversely proportional to C, adding 

a constraint of preferring small positive C values. C values were chosen to be one of 

the following: [0.001,0.005,0.01,0.05,0.1,0.4,0.8,1,2,4]. Finally, for the polynomial 

kernel, different degrees were plugged in ranging from 2 to 8. 

Following the same procedure, all the possible combinations were tried on the vali-

dation dataset and a total of 540 different models were generated with MAPE as the 

grading matrix and it was found that the best combination that acquire a MAPE of 

12.977 which is equivalent to an accuracy of 87.023 percent is: 

 

• Type of Kernel: Linear 

• C: 4 

• ε: 0.05 

 

Samples of all the combinations are provided in table 2 and table 3 in Appendix B. 

The resultant model was then applied to the testing dataset. The forecasted load was 

plotted on top of the actual load to visualize the prediction error in figure 6.11 below 

with the forecasted demand in red. 
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Figure 6.15. Actual total load vs. ε -SVR forecast 

Figure 6.14 only demonstrates the forecasted region which as a result, the forecasted 

load is spread through all the x-axis.  The optimum parameters were then applied to 

the testing dataset and the results were as follows, the model ε -SVR acquired a 

MAPE of 12.886 and an MAE of 3731.5. which means that according to MAPE the 

forecast has an accuracy of  87.114 percent and in the case of MAE, it means that 

there is an average of  3731.5 MWh error for every prediction.  

6.7 ANN 

Artificial Neural Networks like ε -SVR and LSTM will need the same procedure 

for implementation. That includes the normalizing of the dataset, division of the 

dataset into training, validation, and testing.  

ANN is also known to have an increase in computational complexity and duration 

as the number of inputs increases [92], therefore, the weighted inputs that are tabu-

lated in table 6.10 will be fed into the ANN. This machine learning model requires 

multiple parameters that require tuning in order to achieve optimum results.  Using 

python as the execution platform, the parameters needed to be adjusted are as fol-

lows: 
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• Number of neurons (nodes) in each layer 

• Number of hidden layers 

• The gradient of neurons increments throughout the network 

This parameter represents the nature of the number of nodes incre-

ments in each layer i.e. converging ( number of neurons are maximum 

in the input layer and then continues to decrease until the output 

layer), diverging or linear(constant through our the layers). 

• Activation functions: 

There is a total of 8 activation functions available; Rectified Linear 

Activation (ReLU), Logistic (Sigmoid), Hyperbolic Tangent (Tanh), 

Softplus, Softsign, Scaled Exponential Linear Unit (selu), Exponential 

Linear Unit (ELU), and Exponential. 

• Optimizing Functions 

Same as the ones presented in table 6.9, a total of 7 functions; 

Adam, Rmsprop, Adadelta, Adagrad, Adamax, Nadam,  and Ftrl. 

• Epochs 

• Batch size 

Having multiple hyperparameters that can take numerous values, the decision of 

choosing the right combination was complicated. To simplify the faced problem and 

to save time; 2 hidden layers were chosen with a converging gradient of 4n for the 

input layer, 2n for the first hidden layer and n or the second hidden layer (where n 

represents the number of neurons), and finally, 1 for the output layer since the model 

is trying to predict one output value.  

As an initiation of the filtration process, the number of epochs was set to 10 and 

batch sizes were set to be [12,24,48], number of neurons was set to take values equal 

to [2,4,8,16,32,64] and all activation and optimization functions were used to find 

the top possible combinations. A total of 1008 different models were checked ac-

cording to their MAPE’s. A sample of these combinations is attached in Table 4 in 

Appendix B  and the top combinations are tabulated below. 
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Table 6.11. Top ANN models (Initial Filtration). 

Trial-

Number 

Parameters Accuracy 

303 neurons: 64 - Act: softsign - Opt:RMSprop - 

batch_size:12 - Epochs:10 

70.20198375 

639 neurons: 64 - Act: softsign - Opt:RMSprop - 

batch_size:24 - Epochs:10 

70.12225229 

583 neurons: 32 - Act: softsign - Opt:RMSprop - 

batch_size:24 - Epochs:10 

70.09178252 

296 neurons: 64 - Act: softplus - Opt:RMSprop - 

batch_size:12 - Epochs:10 

70.08514573 

191 neurons: 16 - Act: softsign - Opt:RMSprop - 

batch_size:12 - Epochs:10 

69.91640711 

506 neurons: 16 - Act: relu - Opt:RMSprop - 

batch_size:24 - Epochs:10 

69.90841512 

198 neurons: 16 - Act: tanh - Opt:RMSprop - 

batch_size:12 - Epochs:10 

69.9075389 

618 neurons: 64 - Act: relu - Opt:RMSprop - 

batch_size:24 - Epochs:10 

69.89030986 

226 neurons: 32 - Act: relu - Opt:RMSprop - 

batch_size:12 - Epochs:10 

69.87402996 

646 : neurons: 64 - Act: tanh - Opt:RMSprop - 

batch_size:24 - Epochs:10 

69.7950178 

653 neurons: 64 - Act: selu - Opt:RMSprop - 

batch_size:24 - Epochs:10 

69.66521784 

898 neurons: 32 - Act: relu - Opt:RMSprop - 

batch_size:48 - Epochs:10 

69.60468832 

247 neurons: 32 - Act: softsign - Opt:RMSprop - 

batch_size:12 - Epochs:10 

69.58311479 
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Table 6.11 lists the top 13 combinations in terms of MAPE. As the table shows, the 

optimizing function that proved to work best in most of the different combinations 

is Rmsprop. And in the case of the activation functions, “relu”, “softsign”,  and“selu” 

have the highest frequency in terms of repetition in the top results. Also,   “softplus” 

was in the top three models so it can’t be ignored. As for the batch sizes, 24 and 12 

gave the best results. No conclusions were reached for the number of neurons, thus 

the first filtration process is terminated with the highest model scoring a MAPE of 

29.80. Next, the following combinations will be checked: 

• The number of neurons (nodes) in each layer: 64 or 128 or 256 

• Number of hidden layers:2 

• The gradient of neurons increments throughout the network:  converging 

• Activation functions: “relu”, “softsign”,  and“selu” and “softplus” 

• Optimizing Functions: Rmsprop 

• Epochs: 10 

• Batch size: 12 and 24 

These combinations result in 24 different models, once more, the models were 

graded according to their mape and the highest are tabulated below. 

Table 6.12. ANN best models (Second Filteration Process) 

Trial-

Number 

Parameters Accuracy 

17 17 Parameters: neurons: 128 - Act: relu - 

Opt:RMSprop - batch_size:24 - Epochs:10 

70.64658936 

6 6 Parameters: neurons: 128 - Act: softplus - 

Opt:RMSprop - batch_size:12 - Epochs:10 

70.16981432 

5 5 Parameters: neurons: 128 - Act: relu - 

Opt:RMSprop - batch_size:12 - Epochs:10 

70.06811113 

1 1 Parameters: neurons: 64 - Act: relu - 

Opt:RMSprop - batch_size:12 - Epochs:10 

70.02923484 

9 9 Parameters: neurons: 256 - Act: relu - 

Opt:RMSprop - batch_size:12 - Epochs:10 

70.01887144 
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From the second filtration process, the activation function can be narrowed down to 

only relu and softplus. It can be seen that even after the narrowing down, the accu-

racy of the model didn’t change much, the highest MAPE achieved was 29.35  indi-

cating a possibility that ANN is not suitable, to make sure that this intuition is correct,  

more narrowed down combinations were carried out. 

• The number of neurons (nodes) in each layer: 64 or 96 or128 

• Number of hidden layers:2 

• The gradient of neurons increments throughout the network: converging 

• Activation functions: “relu” and “softplus” 

• Optimizing Functions: Rmsprop 

• Epochs: 40 

• Batch size: 12,18, 24 

 

The number of epochs was increased to have an understanding of whether the change 

in accuracy is heavily dependent on the increase in epochs or not. These combina-

tions resulted in a total of 18 different combinations the highest 8 of which are tabu-

lated below. 

 

Table 6.13. ANN best model (Third Filteration Process) 

TrialNumber Parameters Accuracy 

4 neurons: 96 - Act: relu - batch_size:24 - Epochs:40 70.64183 

10 neurons: 64 - Act: relu - batch_size:32 - Epochs:40 70.40984 

6 neurons: 64 - Act: softplus - batch_size:24 - Epochs:40 70.38702 

13 neurons: 64 - Act: relu - batch_size:64 - Epochs:40 70.38487 

3 neurons: 64 - Act: relu - batch_size:18 - Epochs:40 70.37013 

2 neurons: 128 - Act: relu -batch_size:18 - Epochs:40 70.31201 

1 neurons: 64 - Act: softplus -batch_size:32 - Epochs:40 70.19577 

17 neurons: 64 - Act: relu -batch_size:24 - Epochs:40 70.18829 

 

 It can be seen that the activation relu is appearing the most in the top combinations, 

thus it can be concluded that “RELU” is the most appropriate activation function for 
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the current dataset. The increase in the number of epochs using a different number 

of neurons resulted in no felt change in the MAPE that remained equal to 29.35 in 

terms of significant figures. Another attempt to increase the accuracy of the model 

was to increase the number of hidden layers and observe the change in MAPE.  

After conducting 1050 combinations these are the current combinations for the next 

trial. 

• The number of neurons (nodes) in each layer: m*96 

• Number of hidden layers = unknown 

• The gradient of neurons increments throughout the network: converging 

• Activation functions: “relu”  

• Optimizing Functions: Rmsprop 

• Epochs: 10 

• Batch size: 24       

 

In total 6 trials were conducted varying the number of hidden layers from 1 to 6. As 

for the gradient it was set to be in a descending order i.e. for 4 layers the input would 

have 5n, hiddenlayer1 will have 4n and the pattern would continue until the output 

layer with an n equal to 1. The results are given on the next page
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Table 6.14. Best ANN models (Number of hidden layers

Trial Number of 

hidden lay-

ers 

n  in the In-

put  layer 

n in the 1st 

hidden 

layer 

n in the 2nd 

hidden 

layer 

n in the 3rd 

hidden 

layer 

n in the 4th 

hidden 

layer 

n in the 5th 

hidden 

layer 

n in the 6th 

hidden 

layer 

Accuracy 

1 1 2n n X X X X X 55.8 

2 2 3n 2n n X X X X 56.94 

3 3 4n 3n 2n n X X X 57.13 

4 4 5n 4n 3n 2n n X X 57.7 

5 5 6n 5n 4n 3n 2n n X 59.20 

6 6 7n 6n 5n 4n 3n 2n n 59.16 
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It can be seen that the accuracy increases as the number of layers increases. After 

the last combinations are made, the number of hidden layers will be chosen as 5 to 

decrease the complexity since no huge difference in terms of accuracy was seen.  

Next,  the number of neurons in each layer will be experimented with, these experi-

ments will be multiples of the neuron configuration presented in table 6.14 for trial 

5. The current combination will be as follows: 

• The number of neurons (nodes) in each layer: m*96 

• Number of hidden layers: 5 

• The gradient of neurons increments throughout the network: converging 

• Activation functions: “relu”  

• Optimizing Functions: Rmsprop 

• Epochs: 40 

• Batch size: 24 

 

Table 6.15. ANN models (number of neurons within a layer) 

Trial multiples Accuracy 

1 2 66.6 

2 4 64.4 

3 6 58.4 

 

Even though the number of the layers was increased together with the number of 

neurons, positive results were not achieved, It was seen unnecessary to check for the 

diverging and linear variations for the gradient since the accuracy of all the combi-

nations didn’t break the 71 percent accuracy mark for the validation set. the best 

outcome out of all the 1059 combinations was: 
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• The number of neurons (nodes) in each layer: 384,192,96,1 

• Number of hidden layers: 2 

• The gradient of neurons increments throughout the network: converging 

• Activation functions: “relu”  

• Optimizing Functions: Rmsprop 

• Epochs: 40 

• Batch size: 24 

To denote the final result for this model, these parameters were applied on the 

testing set followed by plotting the forecast vs actual load on the same plot as 

explained earlier. 

 

Figure 6.16. Actual vs. ANN forecasted load 

 

The Final ANN model acquired a MAPE of 28.5299 and an MAE of 11225.68. 

which means that according to MAPE the forecast has an accuracy of  71.470 

percent and in the case of MAE, it means that there is an average of  11225.68. 

MWh error for every prediction. 
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6.8 Hybrid Model 

Up to this point, 4 models have been modified and optimized to be implemented on 

the specific problem. The final results were : 

 

Table 6.16. Results Summary 

Model MAPE MAE 

ARIMA 14.12 3938.59 

LSTM 1.7703 504.756 

ε-SVR 12.886 3731.5 

ANN 28.5299 11225.68 

 

This thesis will try to combine the top 2 models in terms of MAPE and MAE to 

create one hybrid model that outperforms both models and decrease the gap between 

the proposed method and the already applied methodology in the literature. 

There are multiple ways to combine models and reach a final ensemble (hybrid 

model) two of the main methods will be used in this thesis [94]: 

• Cascaded methods 

• Boosting methods 

6.8.1 Cascaded  methods 

As the word cascaded is defined in a dictionary it is to “pass (something) on to a 

succession of others” [95]. For using such a method, the application would be feed-

ing an output of model A as an input to model B. In that case model B will operate 

on optimizing the output even further. In this thesis, the best predictions resulted 

from the model LSTM (model A), in an attempt to further get more accurate fore-

casts, the best output obtained will be fed as input to the second-best model which is 
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ε-SVR. To ensure that this resultant hybrid model is working at the maximum effi-

ciency, again the hyperparameter tunings that were mentioned in section 6.6 were 

applied resulting in 540 different variations, in other words, 540 different hybrid 

models. A sample of these models is tabulated in table 6  in appendix B. The best 

combination for the cascade method is as follows: 

➢ Model A [LSTM]: 

o Number of Modules:100 

o Look back:11 

o Batch size:10 

o Optimizer: “Adam”. 

 

➢ Model B [ε-SVR]: 

o Type of Kernel: RBF 

o C: 2 

o ε: 0.01 

 

The prior parameters were then applied to the testing portion of the dataset, followed 

by plotting the actual vs hybrid forecasted load in one graph. The resultant figure is 

demonstrated below. 

 

Figure 6.17. Actual vs Hybrid [1] Forecasted Load 
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The resultant Hybrid model outperformed its formers with a MAPE of 1.71157 ra-

ther than the MAPEs for LSTM and ε-SVR. that were equal to 1.7703  and 12.886  

respectively. The hybrid model achieved an MAE of 488.2369. which also 

outperformed its formers that had MAEs of 504.756 and 3731.5. These outcomes 

can be interpreted as follows; the resultant hybrid model that was formed with the 

cascade method between LSTM and ε-SVR achieved an accuracy of 98.28 percent 

and in the case of MAE, it means that there is an average of  488.2369 MWh error 

for every prediction. 

6.8.2 Boosting methods 

Using this method, weighted coefficients are to be added to the forecasts resulting from the two 

top models to form one final forecast. These weights serve as ratios resembling the importance 

of each model’s prediction while contributing to a new final. The formulation for this algorithm 

is equated below: 

𝑌�̂� = 𝑤𝑖 ∗ 𝑦�̂� + 𝑤𝑗 ∗ 𝑦�̂�      (Eq. 6.7) 

 

Where 𝑌�̂� is the new hybrid model’s forecast, 𝑤𝑖 and 𝑤𝑗 are the weight coefficients 

assigned for models  i and j respectively, and 𝑦�̂�  and 𝑦�̂� are the original forecasts 

resulting from the models. The weight coefficients assigned in that case abide by the 

following restrictions 

 

0 < 𝑤𝑖 , 𝑤𝑗 < 1    

𝑤𝑗 = 1 − 𝑤𝑖      (Eq. 6.8) 
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With the aim of finding the ideal combination of weight coefficients for the current 

dataset, the initial weight coefficient 𝑤𝑖  was assigned as 0.01 and constantly in-

creased with increments of 0.01 until it reached its limit of 1, resulting in a total of 

100 combinations; meaning 100 different hybrid models using the boosting 

method, for the validation dataset. A sample of the combinations is tabulated in ta-

ble 7 in appendix B. The best combination in terms of MAPE emerged from the 

following weights: 

 

Table 6.17. Best weight coefficients for Hybrid model (2) 

Trial Number Modle (I) 

LSTM 

Model (J) 

ε-SVR 

Mape 

𝑤𝑖 𝑤𝑗 

100 1 0 1.7703 

 

The best combination indicates that using LSTM alone would be the optimum solu-

tion, concluding that the boosting method is not an appropriate way of forming a 

hybrid model for the current dataset. 

6.9 Discussion 

As a summary, a total of 2405 different combinations of 6 different models namely, 

ARIMA, LSTM, ε-SVR, ANN, Hybrid Model(1), and Hybrid Model(2).were ex-

plored. This thesis concluded its analysis with the following model parameters that 

were considered to be the best fit out of the different combinations tried. 

➢ ARIMA: 

• p: 3 

• q: 2 

• d: 0 
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➢ LSTM: 

• Number of Modules:100 

• Look back:11 

• Batch size:10 

• Optimizer: “Adam”. 

 

➢ ε-SVR: 

• Type of Kernel: Linear 

• C: 4 

• ε: 0.05 

 

➢ ANN: 

• The number of neurons (nodes) in each layer: 384,192,96,1 

• Number of hidden layers: 2 

• The gradient of neurons increments throughout the network: converging 

• Activation functions: “relu”  

• Optimizing Functions: Rmsprop 

• Epochs: 40 

• Batch size: 24 

 

➢ Hybrid Model (1): 

 

❖ Model A [LSTM]: 

• Number of Modules:100 

• Look back:11 

• Batch size:10 

• Optimizer: “Adam”. 
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❖ Model B [ε-SVR]: 

• Type of Kernel: RBF 

• C: 2 

• ε: 0.01 

 

➢ Hybrid Model (2): 

 

❖ Model 𝑖 [LSTM]: 

• Number of Modules:100 

• Look back:11 

• Batch size:10 

• Optimizer: “Adam”. 

 

❖ Model 𝑗 [ε-SVR]: 

• Type of Kernel: Linear 

• C: 4 

• ε: 0.05 

❖  𝑤𝑖 : 1 

❖  𝑤𝑗 : 0 

 

Unfortunately, the models proposed in this thesis, couldn’t outperform the ENTSO-

E’s prediction, however, promising results are awaiting possible future work.  In a 

real-life application, for predicting Spain's electricity demand, multiples of inputs 

can be considered which can vary in type from qualitative and quantitative. The more 

inputs available, the more aware the models can become. Yet, this thesis only utilized 

quantitative data which mainly focused on weather. 

Several assumptions were made along the way to ease the problem since no high 

computational power is available on hand. Such assumptions were the fact that only 

the 5 major cities’ weather conditions were used to predict all of Spain’s demand, 
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but in reality, if weather conditions were to be used, all the cities’ weather features 

will be fed as inputs. 

Focusing on each model at a time, the probability of the ARIMA model to achieve 

better predictions is minimal since as mentioned earlier in previous sections, ARIMA 

works based on linear correlations which is not the case for the current data. 

LSTM was used as a univariate model and even though a total of 165 different com-

binations were explored, the possibility of other untested combinations having better 

predictions is still very high. If more hyperparameters were checked in different 

ranges, a more optimum result is not far-fetched. Moreover, LSTM can be used as a 

multivariate model which can potentially achieve higher forecasts. 

In ε-SVR, a colossal assumption was made to ease the computational complexity 

which is the addition of weighted coefficients based on city population to decrease 

the number of variables, which as a result decreased the number of inputs that could 

in return provide better learning for the model. Another possible alteration in the 

model’s usage is the utilization of n number of inputs at a time, in the ε-SVR meth-

odology all of the inputs were implemented within the model at the same instance 

but there can even be a  possibility of more accurate results for the weighted inputs 

if only the significant inputs were fed rather than all. Same as the LSTM, there was 

a total of 540 discrete combinations used for the hyperparameters within the model, 

yet there are infinitely many more that could outperform the small sample explored 

within the thesis’s scope. 

ANN is known to provide accurate and reliable results when it comes to forecasting, 

in spite of that, a maximum of 71 percent accuracy was reached and this comes back 

to the previously stated reasons, which include computational power, stated assump-

tions, and more trials.  

In the case of the Hybrid Model (1), its performance is 100 percent dependent on 

how well do the optimum models perform together with the tuning range that is 
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chosen. Also, this method can either be applied between two other models or to all 

of them. There are numerous ways that this method can be implemented. 

Finally, for the Hybrid model (2), it was concluded that the way the weights were 

assigned in the  “Boosting method” doesn’t yield any promising results. Neverthe-

less, logical statements can be added as conditions that may correspond to different 

results. For instance, the holidays or weekends can be grouped and the models’ per-

formance towards these data points would be checked, and consequently, rather than 

applying general weights between models throughout the dataset, constraints can be 

added. For example, all data points other than the weekends and holidays are to be 

predicted using model 𝑖 whereas weekends and holidays are predicted by utilizing 

model 𝑗.  

Weather seasonal variations can also be an important logical statement that should 

be explored in future results and if conclusions could be drawn, Hybrid models that 

include different working models for each season (winter, summer, spring, and Au-

tumn) can contribute to a felt increase in overall accuracy. 

Another crucial contribution that this thesis has achieved is the general usage of the 

LSTM model in electricity demand short-term prediction. There are no frequent pa-

pers that used LSTM in their methodology and LSTM is more seen in other research 

domains rather than predictions for electricity markets. With the obtained results, 

more emphasis can be put towards r-the usage of this model. 

It can be simply deduced that the methodology applied in this thesis with all of its 

assumptions that were needed to be applied due to the lack of computational power, 

was able to achieve a 98.28 percent accuracy with a difference of 0.832  percent to a 

model that incorporates all the possible scenarios. Also, In a real-life application, all 

the previously gatherer historical data was used to predict the last quarter of 2018, 

and in this thesis, 3 years' worth of data points were only used. 

All of the mentioned points above will be considered as future optimizations to the 

current methodology with the goal of achieving higher accuracy than 99.2 percent. 
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CHAPTER 7  

7. CONCLUSION 

Electric demand forecasting approaches with high accuracy and efficiency have 

drawn increasing interest from experts and enterprises in recent years. Effective fore-

casting methods can save a lot of time and money, as well as mitigate a variety of 

hazards. Furthermore, prediction accuracy has not been ideal, and existing singular 

approaches for forecasting different types of data are imprecise. Single techniques 

can only deal with either linearity or non-linearity data; they can't handle both. Some 

combined (hybrid) procedures can enhance accuracy slightly, but not significantly. 

As a result, developing methods for projecting electricity consumption with greater 

precision is extremely desirable.  

This thesis has combined LSTM and ε-Support Vector Regression to form one uni-

fied hybrid model for predicting electricity demand in Spain during the last quarter 

of 2018. This model was fed with weather variables from the five largest cities in 

terms of population and was able to outperform ANN, ARIMA, and both of the com-

bined models separately. The model achieved an accuracy of  98.28 percent, yet 

wasn’t able to break past the already used method in the literature that had acquired 

an accuracy of  99.122 percent. 

Many assumptions were applied in the application to overcome the computational 

duration which as a result decreased the amount of information that is fed to the 

model. Nevertheless, promising results are awaiting the current methodology if pre-

sented with more data and stronger computational power. 
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APPENDICES 

A. Data Pre-processing 

Appendix-A-Fig- 1. Humidity Distribution Plot 

 

 

Appendix-A-Fig- 2. Pressure Distribution Plot 
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Appendix-A-Fig- 3. Temperature Distribution Plot 

 

 

Appendix-A-Fig- 4.Temperature_max  Distribution Plot 
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Appendix-A-Fig- 5. Temperature_ min Distribution Plot 

 

 

Appendix-A-Fig- 6. Wind Degree Distribution Plot 
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Appendix-A-Fig- 7. Wind Speed  Distribution Plot 

 

 

Appendix-A-Fig- 8. Humidity Histogram Plot for each city 
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Appendix-A-Fig- 9. Pressure Histogram Plot for each city 

 

 

Appendix-A-Fig- 10. Temperature_max Histogram Plot for each city 
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Appendix-A-Fig- 11. Temperature_min  Histogram Plot for each city 

 

 

Appendix-A-Fig- 12. Temperature Histogram Plot for each city 
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Appendix-A-Fig- 13 Wind Degree  Histogram Plot for each city 

 

 

 

Appendix-A-Fig- 14. Wind Speed  Histogram Plot for each city 
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Appendix-A-Fig- 15. Pressure Box Plots for every city before removing outli-

ers. 

 

 

Appendix-A-Fig- 16.Pressure Box Plots for every city after removing outliers. 
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Appendix-A-Fig- 17. Temperature_max Box Plots for every city before remov-

ing outliers. 

 

 

Appendix-A-Fig- 18. Temperature_max Box Plots for every city after remov-

ing outliers 
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Appendix-A-Fig- 19. Temperature Box Plots for every city before removing  

outliers. 

 

 

Appendix-A-Fig- 20.Temperature Box Plots for every city after removing out-

liers. 
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Appendix-A-Fig- 21.Temperature_min Box Plots for every city before remov-

ing outliers 

 

 

Appendix-A-Fig- 22.Temperature_min Box Plots for every city after removing 

outliers 
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Appendix-A-Fig- 23. Wind Speed Box Plots for every city before removing 

outliers 

 

 

Appendix-A-Fig- 24.Wind Speed Box Plots for every city after removing outli-

ers 
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Appendix-A-Fig- 25.Wind Degree  Box Plots for every city before removing 

outliers 
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B. Hyperparameter Tuning 

Appendix-B- Table 1. LSTM Hyper Parameter Tuning 

Trial Parameters Accuracy 

67 modules: 100 - Lookback: 11 - optimizer:Adam - batch_size:10 - Epochs:10 97.80052 

45 modules: 50 - Lookback: 15 - optimizer:Adam - batch_size:10 - Epochs:10 97.78703 

59 modules: 80 - Lookback: 11 - optimizer:Adam - batch_size:10 - Epochs:10 97.78447 

61 modules: 80 - Lookback: 15 - optimizer:Adam - batch_size:10 - Epochs:10 97.77562 

63 modules: 80 - Lookback: 20 - optimizer:Adam - batch_size:10 - Epochs:10 97.77398 

51 modules: 60 - Lookback: 11 - optimizer:Adam - batch_size:10 - Epochs:10 97.77158 

75 modules: 200 - Lookback: 11 - optimizer:Adam - batch_size:10 - Epochs:10 97.77071 

43 modules: 50 - Lookback: 11 - optimizer:Adam - batch_size:10 - Epochs:10 97.76968 

92 modules: 60 - Lookback: 11 - optimizer:Nadam - batch_size:12 - Epochs:10 97.76725 

66 modules: 100 - Lookback: 10 - optimizer:Nadam - batch_size:10 - Epochs:10 97.76537 

106 modules: 100 - Lookback: 10 - optimizer:Nadam - batch_size:12 - Epochs:10 97.76321 

35 modules: 200 - Lookback: 11 - optimizer:Adam - batch_size:8 - Epochs:10 97.76248 

65 modules: 100 - Lookback: 10 - optimizer:Adam - batch_size:10 - Epochs:10 97.76177 

117 modules: 200 - Lookback: 15 - optimizer:Adam - batch_size:12 - Epochs:10 97.75788 

73 modules: 200 - Lookback: 10 - optimizer:Adam - batch_size:10 - Epochs:10 97.75772 

5 modules: 50 - Lookback: 15 - optimizer:Adam - batch_size:8 - Epochs:10 97.75538 

91 modules: 60 - Lookback: 11 - optimizer:Adam - batch_size:12 - Epochs:10 97.75496 

25 modules: 100 - Lookback: 10 - optimizer:Adam - batch_size:8 - Epochs:10 97.75252 

11 modules: 60 - Lookback: 11 - optimizer:Adam - batch_size:8 - Epochs:10 97.75117 

77 modules: 200 - Lookback: 15 - optimizer:Adam - batch_size:10 - Epochs:10 97.75094 
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Appendix-B- Table 2. SVR Hyperparameter tuning for RBF and Linear Ker-

nels 

Trial Parameters Accuracy 

116 kernel: linear - C values: 4 - Epsilon:0.05 87.02348028 

110 kernel: linear - C values: 2 - Epsilon:0.05 87.02335043 

92 kernel: linear - C values: 0.4 - Epsilon:0.05 87.02330052 

104 kernel: linear - C values: 1 - Epsilon:0.05 87.02329276 

98 kernel: linear - C values: 0.8 - Epsilon:0.05 87.02326502 

86 kernel: linear - C values: 0.1 - Epsilon:0.05 87.02276336 

80 kernel: linear - C values: 0.05 - Epsilon:0.05 87.02276222 

109 kernel: linear - C values: 2 - Epsilon:0.01 87.02268905 

97 kernel: linear - C values: 0.8 - Epsilon:0.01 87.02267166 

91 kernel: linear - C values: 0.4 - Epsilon:0.01 87.0226585 

103 kernel: linear - C values: 1 - Epsilon:0.01 87.02253488 

115 kernel: linear - C values: 4 - Epsilon:0.01 87.0224246 

85 kernel: linear - C values: 0.1 - Epsilon:0.01 87.02147215 

79 kernel: linear - C values: 0.05 - Epsilon:0.01 87.02134629 

111 kernel: linear - C values: 2 - Epsilon:0.1 87.01809936 

87 kernel: linear - C values: 0.1 - Epsilon:0.1 87.017722 

117 kernel: linear - C values: 4 - Epsilon:0.1 87.0176689 

99 kernel: linear - C values: 0.8 - Epsilon:0.1 87.01762076 

93 kernel: linear - C values: 0.4 - Epsilon:0.1 87.01749453 

105 kernel: linear - C values: 1 - Epsilon:0.1 87.01748886 

74 kernel: linear - C values: 0.01 - Epsilon:0.05 87.01694182 

73 kernel: linear - C values: 0.01 - Epsilon:0.01 87.01685412 

81 kernel: linear - C values: 0.05 - Epsilon:0.1 87.01660496 

68 kernel: linear - C values: 0.005 - Epsilon:0.05 87.01370866 

67 kernel: linear - C values: 0.005 - Epsilon:0.01 87.01367237 

75 kernel: linear - C values: 0.01 - Epsilon:0.1 87.01319191 

69 kernel: linear - C values: 0.005 - Epsilon:0.1 87.00631128 
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Appendix-B- Table 3. SVR Hyperparameter tuning for Polynomial Kernels 

Trial Parameters Accuracy 

72 Polynomial: 3 - C values: 0.005 - Epsilon:0.8 86.94649395 

71 Polynomial: 3 - C values: 0.005 - Epsilon:0.6 86.92616642 

78 Polynomial: 3 - C values: 0.01 - Epsilon:0.8 86.90300109 

70 Polynomial: 3 - C values: 0.005 - Epsilon:0.4 86.89908367 

77 Polynomial: 3 - C values: 0.01 - Epsilon:0.6 86.87491306 

64 Polynomial: 3 - C values: 0.001 - Epsilon:0.4 86.84933533 

63 Polynomial: 3 - C values: 0.001 - Epsilon:0.1 86.84862873 

62 Polynomial: 3 - C values: 0.001 - Epsilon:0.05 86.84267213 

61 Polynomial: 3 - C values: 0.001 - Epsilon:0.01 86.8383234 

65 Polynomial: 3 - C values: 0.001 - Epsilon:0.6 86.82421129 

69 Polynomial: 3 - C values: 0.005 - Epsilon:0.1 86.79626836 

66 Polynomial: 3 - C values: 0.001 - Epsilon:0.8 86.77401251 

68 Polynomial: 3 - C values: 0.005 - Epsilon:0.05 86.76572714 

76 Polynomial: 3 - C values: 0.01 - Epsilon:0.4 86.75936821 

67 Polynomial: 3 - C values: 0.005 - Epsilon:0.01 86.75710503 

84 Polynomial: 3 - C values: 0.05 - Epsilon:0.8 86.75649209 

186 Polynomial: 5 - C values: 0.001 - Epsilon:0.8 86.63915072 

90 Polynomial: 3 - C values: 0.1 - Epsilon:0.8 86.63588554 

75 Polynomial: 3 - C values: 0.01 - Epsilon:0.1 86.62130046 

74 Polynomial: 3 - C values: 0.01 - Epsilon:0.05 86.62055308 

185 Polynomial: 5 - C values: 0.001 - Epsilon:0.6 86.61613342 

184 Polynomial: 5 - C values: 0.001 - Epsilon:0.4 86.56366365 

73 Polynomial: 3 - C values: 0.01 - Epsilon:0.01 86.56094489 

192 Polynomial: 5 - C values: 0.005 - Epsilon:0.8 86.50772534 

183 Polynomial: 5 - C values: 0.001 - Epsilon:0.1 86.46343323 

182 Polynomial: 5 - C values: 0.001 - Epsilon:0.05 86.45075299 

181 Polynomial: 5 - C values: 0.001 - Epsilon:0.01 86.44613149 
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Appendix-B- Table 4. ANN highest combinations (first filtiration process) 

Trial Parameters Accuracy 

1 neurons: 2 - Act: relu - Opt:Adam - batch_size:12 - Epochs:10 19.74024 

2 neurons: 2 - Act: relu - Opt:RMSprop - batch_size:12 - Epochs:10 54.16513 

3 neurons: 2 - Act: relu - Opt:Adadelta - batch_size:12 - Epochs:10 8.891686 

4 neurons: 2 - Act: relu - Opt:Adagrad - batch_size:12 - Epochs:10 9.835159 

5 neurons: 2 - Act: relu - Opt:Adamax - batch_size:12 - Epochs:10 52.74416 

6 neurons: 2 - Act: relu - Opt:Nadam - batch_size:12 - Epochs:10 39.2594 

7 neurons: 2 - Act: relu - Opt:Ftrl - batch_size:12 - Epochs:10 21.80929 

8 neurons: 2 - Act: sigmoid - Opt:Adam - batch_size:12 - Epochs:10 -15.1422 

9 neurons: 2 - Act: sigmoid - Opt:RMSprop - batch_size:12 - Epochs:10 64.89809 

10 neurons: 2 - Act: sigmoid - Opt:Adadelta - batch_size:12 - Epochs:10 10.89777 

11 neurons: 2 - Act: sigmoid - Opt:Adagrad - batch_size:12 - Epochs:10 7.043505 

12 neurons: 2 - Act: sigmoid - Opt:Adamax - batch_size:12 - Epochs:10 0.20771 

13 neurons: 2 - Act: sigmoid - Opt:Nadam - batch_size:12 - Epochs:10 0.47628 

14 neurons: 2 - Act: sigmoid - Opt:Ftrl - batch_size:12 - Epochs:10 27.76777 

15 neurons: 2 - Act: softplus - Opt:Adam - batch_size:12 - Epochs:10 -10.6296 

16 neurons: 2 - Act: softplus - Opt:RMSprop - batch_size:12 - Epochs:10 61.34832 

17 neurons: 2 - Act: softplus - Opt:Adadelta - batch_size:12 - Epochs:10 6.708979 

18 neurons: 2 - Act: softplus - Opt:Adagrad - batch_size:12 - Epochs:10 21.47742 

19 neurons: 2 - Act: softplus - Opt:Adamax - batch_size:12 - Epochs:10 52.34568 

20 neurons: 2 - Act: softplus - Opt:Nadam - batch_size:12 - Epochs:10 -15.2086 

21 neurons: 2 - Act: softplus - Opt:Ftrl - batch_size:12 - Epochs:10 0.000932 

22 neurons: 2 - Act: softsign - Opt:Adam - batch_size:12 - Epochs:10 3.17126 

23 neurons: 2 - Act: softsign - Opt:RMSprop - batch_size:12 - Epochs:10 66.89811 
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Appendix-B- Table 5. ANN top models ( second filtration process) 

 

 

 

 

 

 

Trial Parameters Accuracy 

1 neurons: 64 - Act: relu - Opt:RMSprop - batch_size:12 - Epochs:10 70.02923 

2 neurons: 64 - Act: softplus - Opt:RMSprop - batch_size:12 - Epochs:10 67.80174 

3 neurons: 64 - Act: softsign - Opt:RMSprop - batch_size:12 - Epochs:10 68.8477 

4 neurons: 64 - Act: selu - Opt:RMSprop - batch_size:12 - Epochs:10 69.63384 

5 neurons: 128 - Act: relu - Opt:RMSprop - batch_size:12 - Epochs:10 70.06811 

6 neurons: 128 - Act: softplus - Opt:RMSprop - batch_size:12 - Epochs:10 70.16981 

7 neurons: 128 - Act: softsign - Opt:RMSprop - batch_size:12 - Epochs:10 68.10646 

8 neurons: 128 - Act: selu - Opt:RMSprop - batch_size:12 - Epochs:10 68.02608 

9 neurons: 256 - Act: relu - Opt:RMSprop - batch_size:12 - Epochs:10 70.01887 

10 neurons: 256 - Act: softplus - Opt:RMSprop - batch_size:12 - Epochs:10 69.61939 

11 neurons: 256 - Act: softsign - Opt:RMSprop - batch_size:12 - Epochs:10 69.4595 

12 neurons: 256 - Act: selu - Opt:RMSprop - batch_size:12 - Epochs:10 68.98504 

13 neurons: 64 - Act: relu - Opt:RMSprop - batch_size:24 - Epochs:10 69.50291 

14 neurons: 64 - Act: softplus - Opt:RMSprop - batch_size:24 - Epochs:10 69.46919 

15 neurons: 64 - Act: softsign - Opt:RMSprop - batch_size:24 - Epochs:10 68.91204 

16 neurons: 64 - Act: selu - Opt:RMSprop - batch_size:24 - Epochs:10 67.84672 

17 neurons: 128 - Act: relu - Opt:RMSprop - batch_size:24 - Epochs:10 70.64659 

18 neurons: 128 - Act: softplus - Opt:RMSprop - batch_size:24 - Epochs:10 68.98063 

19 neurons: 128 - Act: softsign - Opt:RMSprop - batch_size:24 - Epochs:10 67.22923 

20 neurons: 128 - Act: selu - Opt:RMSprop - batch_size:24 - Epochs:10 67.32475 

21 neurons: 256 - Act: relu - Opt:RMSprop - batch_size:24 - Epochs:10 69.11455 

22 neurons: 256 - Act: softplus - Opt:RMSprop - batch_size:24 - Epochs:10 69.45091 

23 neurons: 256 - Act: softsign - Opt:RMSprop - batch_size:24 - Epochs:10 68.97506 

24 neurons: 256 - Act: selu - Opt:RMSprop - batch_size:24 - Epochs:10 66.98342 
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Appendix-B- Table 6. SVR Hyperparameter tuning for Hybrid Model (1) 

Trial Parameters Accuracy 

49 kernel: rbf - C values: 2 - Epsilon:0.01 98.36403 

55 kernel: rbf - C values: 4 - Epsilon:0.01 98.36388 

43 kernel: rbf - C values: 1 - Epsilon:0.01 98.36376 

37 kernel: rbf - C values: 0.8 - Epsilon:0.01 98.36368 

31 kernel: rbf - C values: 0.4 - Epsilon:0.01 98.36348 

56 kernel: rbf - C values: 4 - Epsilon:0.05 98.36274 

44 kernel: rbf - C values: 1 - Epsilon:0.05 98.36270 

50 kernel: rbf - C values: 2 - Epsilon:0.05 98.36270 

38 kernel: rbf - C values: 0.8 - Epsilon:0.05 98.36266 

32 kernel: rbf - C values: 0.4 - Epsilon:0.05 98.36237 

25 kernel: rbf - C values: 0.1 - Epsilon:0.01 98.36210 

26 kernel: rbf - C values: 0.1 - Epsilon:0.05 98.36127 

19 kernel: rbf - C values: 0.05 - Epsilon:0.01 98.36010 

20 kernel: rbf - C values: 0.05 - Epsilon:0.05 98.35914 

33 kernel: rbf - C values: 0.4 - Epsilon:0.1 98.35760 

39 kernel: rbf - C values: 0.8 - Epsilon:0.1 98.35755 

45 kernel: rbf - C values: 1 - Epsilon:0.1 98.35743 

51 kernel: rbf - C values: 2 - Epsilon:0.1 98.35731 

57 kernel: rbf - C values: 4 - Epsilon:0.1 98.35721 

27 kernel: rbf - C values: 0.1 - Epsilon:0.1 98.35526 

103 kernel: linear - C values: 1 - Epsilon:0.01 98.35278 

97 kernel: linear - C values: 0.8 - Epsilon:0.01 98.35276 

79 kernel: linear - C values: 0.05 - Epsilon:0.01 98.35275 

91 kernel: linear - C values: 0.4 - Epsilon:0.01 98.35275 

73 kernel: linear - C values: 0.01 - Epsilon:0.01 98.35272 

67 kernel: linear - C values: 0.005 - Epsilon:0.01 98.35271 

85 kernel: linear - C values: 0.1 - Epsilon:0.01 98.35270 

109 kernel: linear - C values: 2 - Epsilon:0.01 98.35268 

115 kernel: linear - C values: 4 - Epsilon:0.01 98.35266 

69 kernel: linear - C values: 0.005 - Epsilon:0.1 98.35246 

92 kernel: linear - C values: 0.4 - Epsilon:0.05 98.35229 

80 kernel: linear - C values: 0.05 - Epsilon:0.05 98.35226 

98 kernel: linear - C values: 0.8 - Epsilon:0.05 98.35225 

74 kernel: linear - C values: 0.01 - Epsilon:0.05 98.35224 

104 kernel: linear - C values: 1 - Epsilon:0.05 98.35224 

110 kernel: linear - C values: 2 - Epsilon:0.05 98.35218 

68 kernel: linear - C values: 0.005 - Epsilon:0.05 98.35218 
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Appendix-B- Table 7. Hybrid model (2)  Hyperparameter tuning for weights 

 LSTM Percentage  
(𝑤𝑖) 

ε-SVR percentage  
(𝑤𝑗) MAPE 

0.01 0.99 12.86472163 

0.02 0.98 12.74218462 

0.03 0.97 12.61965311 

0.04 0.96 12.4971346 

0.05 0.95 12.3746225 

0.06 0.94 12.25213816 

0.07 0.93 12.12967379 

0.08 0.92 12.00726637 

0.09 0.91 11.88489737 

0.1 0.90 11.76254545 

0.11 0.89 11.64020041 

0.12 0.88 11.51786702 

0.13 0.87 11.39555025 

0.14 0.86 11.2733161 

0.15 0.85 11.15110934 

0.16 0.84 11.02894351 

0.17 0.83 10.90679637 

0.18 0.82 10.78472059 

0.19 0.81 10.66271721 

0.2 0.80 10.54079141 

0.21 0.79 10.41896277 

0.22 0.78 10.29721675 

0.23 0.77 10.17557283 

0.24 0.76 10.05400946 

0.25 0.75 9.932478555 

0.26 0.74 9.810992446 

0.27 0.73 9.689581028 


